Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany.
Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany.
J Phys Chem A. 2022 Mar 3;126(8):1336-1344. doi: 10.1021/acs.jpca.1c09968. Epub 2022 Feb 18.
TLD1433 is the first ruthenium (Ru)-based photodynamic therapy (PDT) agent to advance to clinical trials and is currently in a phase II study for treating nonmuscle bladder cancer with PDT. Herein, we present a photophysical study of TLD1433 and its derivative TLD1633 using complex, biologically relevant solvents to elucidate the excited-state properties that are key for biological activity. The complexes incorporate an imidazo [4,5-][1,10]phenanthroline (IP) ligand appended to α-ter- or quaterthiophene, respectively, where TLD1433 = [Ru(4,4'-dmb)(IP-3T)]Cl and TLD1633 = [Ru(4,4'-dmb)(IP-4T)]Cl (4,4'-dmb = 4,4'-dimethyl-2,2'-bipyridine; 3T = α-terthiophene; 4T = α-quaterthiophene). Time-resolved transient absorption experiments demonstrate that the excited-state dynamics of the complexes change upon interaction with biological macromolecules (e.g., DNA). In this case, the accessibility of the lowest-energy triplet intraligand charge-transfer (ILCT) state (T) is increased at the expense of a higher-lying ILCT state. We attribute this behavior to the increased rigidity of the ligand framework upon binding to DNA, which prolongs the lifetime of the T state. This lowest-lying state is primarily responsible for O sensitization and hence photoinduced cytotoxicity. Therefore, to gain a realistic picture of the excited-state kinetics that underlie the photoinduced function of the complexes, it is necessary to interrogate their photophysical dynamics in the presence of biological targets once they are known.
TLD1433 是第一个进入临床试验的钌(Ru)基光动力疗法(PDT)药物,目前正在进行 II 期研究,用 PDT 治疗非肌肉浸润性膀胱癌。本文介绍了 TLD1433 及其衍生物 TLD1633 的光物理研究,使用复杂的、与生物学相关的溶剂来阐明对生物活性至关重要的激发态性质。这些配合物分别将咪唑并[4,5-][1,10]菲咯啉(IP)配体连接到α-三噻吩或α-四噻吩上,其中 TLD1433 = [Ru(4,4'-二甲基-2,2'-联吡啶)(IP-3T)]Cl,TLD1633 = [Ru(4,4'-二甲基-2,2'-联吡啶)(IP-4T)]Cl(4,4'-二甲基-2,2'-联吡啶;3T = α-三噻吩;4T = α-四噻吩)。时间分辨瞬态吸收实验表明,配合物与生物大分子(如 DNA)相互作用时,其激发态动力学发生变化。在这种情况下,最低能量的三重态内配体电荷转移(ILCT)态(T)的可及性增加,而代价是较高的 ILCT 态。我们将这种行为归因于配体骨架与 DNA 结合时的刚性增加,这延长了 T 态的寿命。这种最低能级状态主要负责 O 敏化,因此具有光诱导细胞毒性。因此,为了更真实地了解激发态动力学,从而了解配合物的光诱导功能,有必要在了解生物靶标后,在其存在的情况下研究其光物理动力学。