Suppr超能文献

与生物分子相互作用有助于形成用于光动力治疗的钌配合物中决定功能的长寿命三重态。

Interaction with a Biomolecule Facilitates the Formation of the Function-Determining Long-Lived Triplet State in a Ruthenium Complex for Photodynamic Therapy.

机构信息

Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany.

Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany.

出版信息

J Phys Chem A. 2022 Mar 3;126(8):1336-1344. doi: 10.1021/acs.jpca.1c09968. Epub 2022 Feb 18.

Abstract

TLD1433 is the first ruthenium (Ru)-based photodynamic therapy (PDT) agent to advance to clinical trials and is currently in a phase II study for treating nonmuscle bladder cancer with PDT. Herein, we present a photophysical study of TLD1433 and its derivative TLD1633 using complex, biologically relevant solvents to elucidate the excited-state properties that are key for biological activity. The complexes incorporate an imidazo [4,5-][1,10]phenanthroline (IP) ligand appended to α-ter- or quaterthiophene, respectively, where TLD1433 = [Ru(4,4'-dmb)(IP-3T)]Cl and TLD1633 = [Ru(4,4'-dmb)(IP-4T)]Cl (4,4'-dmb = 4,4'-dimethyl-2,2'-bipyridine; 3T = α-terthiophene; 4T = α-quaterthiophene). Time-resolved transient absorption experiments demonstrate that the excited-state dynamics of the complexes change upon interaction with biological macromolecules (e.g., DNA). In this case, the accessibility of the lowest-energy triplet intraligand charge-transfer (ILCT) state (T) is increased at the expense of a higher-lying ILCT state. We attribute this behavior to the increased rigidity of the ligand framework upon binding to DNA, which prolongs the lifetime of the T state. This lowest-lying state is primarily responsible for O sensitization and hence photoinduced cytotoxicity. Therefore, to gain a realistic picture of the excited-state kinetics that underlie the photoinduced function of the complexes, it is necessary to interrogate their photophysical dynamics in the presence of biological targets once they are known.

摘要

TLD1433 是第一个进入临床试验的钌(Ru)基光动力疗法(PDT)药物,目前正在进行 II 期研究,用 PDT 治疗非肌肉浸润性膀胱癌。本文介绍了 TLD1433 及其衍生物 TLD1633 的光物理研究,使用复杂的、与生物学相关的溶剂来阐明对生物活性至关重要的激发态性质。这些配合物分别将咪唑并[4,5-][1,10]菲咯啉(IP)配体连接到α-三噻吩或α-四噻吩上,其中 TLD1433 = [Ru(4,4'-二甲基-2,2'-联吡啶)(IP-3T)]Cl,TLD1633 = [Ru(4,4'-二甲基-2,2'-联吡啶)(IP-4T)]Cl(4,4'-二甲基-2,2'-联吡啶;3T = α-三噻吩;4T = α-四噻吩)。时间分辨瞬态吸收实验表明,配合物与生物大分子(如 DNA)相互作用时,其激发态动力学发生变化。在这种情况下,最低能量的三重态内配体电荷转移(ILCT)态(T)的可及性增加,而代价是较高的 ILCT 态。我们将这种行为归因于配体骨架与 DNA 结合时的刚性增加,这延长了 T 态的寿命。这种最低能级状态主要负责 O 敏化,因此具有光诱导细胞毒性。因此,为了更真实地了解激发态动力学,从而了解配合物的光诱导功能,有必要在了解生物靶标后,在其存在的情况下研究其光物理动力学。

相似文献

2
Ru(II) Phenanthroline-Based Oligothienyl Complexes as Phototherapy Agents.
Inorg Chem. 2023 Dec 25;62(51):21181-21200. doi: 10.1021/acs.inorgchem.3c03216. Epub 2023 Dec 11.
3
String-Attached Oligothiophene Substituents Determine the Fate of Excited States in Ruthenium Complexes for Photodynamic Therapy.
J Phys Chem A. 2021 Aug 19;125(32):6985-6994. doi: 10.1021/acs.jpca.1c04900. Epub 2021 Aug 9.
4
Excited State Dynamics of a Photobiologically Active Ru(II) Dyad Are Altered in Biologically Relevant Environments.
J Phys Chem A. 2017 Aug 3;121(30):5635-5644. doi: 10.1021/acs.jpca.7b04670. Epub 2017 Jul 25.
6
π-Expansive Heteroleptic Ruthenium(II) Complexes as Reverse Saturable Absorbers and Photosensitizers for Photodynamic Therapy.
Inorg Chem. 2017 Mar 20;56(6):3245-3259. doi: 10.1021/acs.inorgchem.6b02624. Epub 2017 Mar 6.
7
NIR-Absorbing Ru Complexes Containing α-Oligothiophenes for Applications in Photodynamic Therapy.
Chembiochem. 2020 Dec 11;21(24):3594-3607. doi: 10.1002/cbic.202000419. Epub 2020 Sep 25.
8
Influence of Protonation State on the Excited State Dynamics of a Photobiologically Active Ru(II) Dyad.
J Phys Chem A. 2016 Aug 18;120(32):6379-88. doi: 10.1021/acs.jpca.6b05957. Epub 2016 Aug 9.
9
Strained ruthenium metal-organic dyads as photocisplatin agents with dual action.
J Inorg Biochem. 2016 May;158:45-54. doi: 10.1016/j.jinorgbio.2016.01.009. Epub 2016 Jan 9.

引用本文的文献

1
Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics.
Small Methods. 2024 Nov;8(11):e2400563. doi: 10.1002/smtd.202400563. Epub 2024 Sep 25.
2
Using Biological Photophysics to Map the Excited-State Topology of Molecular Photosensitizers for Photodynamic Therapy.
Angew Chem Int Ed Engl. 2023 Apr 17;62(17):e202301452. doi: 10.1002/anie.202301452. Epub 2023 Mar 20.

本文引用的文献

1
String-Attached Oligothiophene Substituents Determine the Fate of Excited States in Ruthenium Complexes for Photodynamic Therapy.
J Phys Chem A. 2021 Aug 19;125(32):6985-6994. doi: 10.1021/acs.jpca.1c04900. Epub 2021 Aug 9.
3
Near-infrared absorbing Ru(ii) complexes act as immunoprotective photodynamic therapy (PDT) agents against aggressive melanoma.
Chem Sci. 2020 Sep 9;11(43):11740-11762. doi: 10.1039/d0sc03875j. eCollection 2020 Nov 21.
4
Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy.
Chem Sci. 2020 Aug 3;11(36):9784-9806. doi: 10.1039/d0sc03008b. eCollection 2020 Sep 28.
5
Metal-based photosensitizers for photodynamic therapy: the future of multimodal oncology?
Curr Opin Chem Biol. 2020 Jun;56:23-27. doi: 10.1016/j.cbpa.2019.10.004. Epub 2019 Nov 20.
7
New Ru(ii) photocages operative with near-IR light: new platform for drug delivery in the PDT window.
Chem Sci. 2018 Jul 20;9(32):6711-6720. doi: 10.1039/c8sc02094a. eCollection 2018 Aug 28.
9
A NIR phosphorescent osmium(ii) complex as a lysosome tracking reagent and photodynamic therapeutic agent.
Chem Commun (Camb). 2017 Nov 14;53(91):12341-12344. doi: 10.1039/c7cc07776a.
10
Excited State Dynamics of a Photobiologically Active Ru(II) Dyad Are Altered in Biologically Relevant Environments.
J Phys Chem A. 2017 Aug 3;121(30):5635-5644. doi: 10.1021/acs.jpca.7b04670. Epub 2017 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验