Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.
Department of Chemistry, Tufts University, Medford, Massachusetts, United States of America.
PLoS Biol. 2022 Feb 18;20(2):e3001569. doi: 10.1371/journal.pbio.3001569. eCollection 2022 Feb.
The sequence space accessible to evolving proteins can be enhanced by cellular chaperones that assist biophysically defective clients in navigating complex folding landscapes. It is also possible, at least in theory, for proteostasis mechanisms that promote strict quality control to greatly constrain accessible protein sequence space. Unfortunately, most efforts to understand how proteostasis mechanisms influence evolution rely on artificial inhibition or genetic knockdown of specific chaperones. The few experiments that perturb quality control pathways also generally modulate the levels of only individual quality control factors. Here, we use chemical genetic strategies to tune proteostasis networks via natural stress response pathways that regulate the levels of entire suites of chaperones and quality control mechanisms. Specifically, we upregulate the unfolded protein response (UPR) to test the hypothesis that the host endoplasmic reticulum (ER) proteostasis network shapes the sequence space accessible to human immunodeficiency virus-1 (HIV-1) envelope (Env) protein. Elucidating factors that enhance or constrain Env sequence space is critical because Env evolves extremely rapidly, yielding HIV strains with antibody- and drug-escape mutations. We find that UPR-mediated upregulation of ER proteostasis factors, particularly those controlled by the IRE1-XBP1s UPR arm, globally reduces Env mutational tolerance. Conserved, functionally important Env regions exhibit the largest decreases in mutational tolerance upon XBP1s induction. Our data indicate that this phenomenon likely reflects strict quality control endowed by XBP1s-mediated remodeling of the ER proteostasis environment. Intriguingly, and in contrast, specific regions of Env, including regions targeted by broadly neutralizing antibodies, display enhanced mutational tolerance when XBP1s is induced, hinting at a role for host proteostasis network hijacking in potentiating antibody escape. These observations reveal a key function for proteostasis networks in decreasing instead of expanding the sequence space accessible to client proteins, while also demonstrating that the host ER proteostasis network profoundly shapes the mutational tolerance of Env in ways that could have important consequences for HIV adaptation.
进化中的蛋白质可利用的序列空间可以通过细胞伴侣来增强,这些伴侣可以帮助生物物理缺陷的客户在复杂的折叠景观中导航。在理论上,促进严格质量控制的蛋白质稳定机制也可以极大地限制可利用的蛋白质序列空间。不幸的是,大多数理解蛋白质稳定机制如何影响进化的努力都依赖于对特定伴侣的人工抑制或遗传敲低。少数扰乱质量控制途径的实验通常也只调节单个质量控制因素的水平。在这里,我们使用化学遗传学策略通过调节整套伴侣和质量控制机制水平的天然应激反应途径来调整蛋白质稳定网络。具体来说,我们上调未折叠蛋白反应(UPR),以检验内质网(ER)蛋白质稳定网络塑造人类免疫缺陷病毒-1(HIV-1)包膜(Env)蛋白可利用序列空间的假设。阐明增强或限制 Env 序列空间的因素至关重要,因为 Env 进化非常迅速,产生了具有抗体和药物逃逸突变的 HIV 株。我们发现,UPR 介导的 ER 蛋白质稳定因子上调,特别是那些受 IRE1-XBP1s UPR 臂控制的因子,全局降低了 Env 的突变容忍度。保守的、功能重要的 Env 区域在 XBP1s 诱导后突变容忍度下降最大。我们的数据表明,这种现象可能反映了 XBP1s 介导的内质网蛋白质稳定环境重塑赋予的严格质量控制。有趣的是,相反,Env 的特定区域,包括被广泛中和抗体靶向的区域,在 XBP1s 诱导时显示出增强的突变容忍度,暗示宿主蛋白质稳定网络劫持在增强抗体逃逸中起作用。这些观察结果揭示了蛋白质稳定网络在降低而不是扩展客户蛋白质可利用的序列空间方面的关键功能,同时也表明宿主 ER 蛋白质稳定网络深刻地塑造了 Env 的突变容忍度,这可能对 HIV 适应产生重要影响。