Sebastian Rebecca M, Patrick Jessica E, Hui Tiffani, Amici David R, Giacomelli Andrew O, Butty Vincent L, Hahn William C, Mendillo Marc L, Lin Yu-Shan, Shoulders Matthew D
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
Department of Chemistry, Tufts University, Medford, MA, USA.
bioRxiv. 2024 Nov 3:2024.11.01.621414. doi: 10.1101/2024.11.01.621414.
Protein mutational landscapes are sculpted by the impacts of the resulting amino acid substitutions on the protein's stability and folding or aggregation kinetics. These properties can, in turn, be modulated by the composition and activities of the cellular proteostasis network. Heat shock factor 1 (HSF1) is the master regulator of the cytosolic and nuclear proteostasis networks, dynamically tuning the expression of cytosolic and nuclear chaperones and quality control factors to meet demand. Chronic increases in HSF1 levels and activity are prominent hallmarks of cancer cells. One plausible explanation for this observation is that the consequent upregulation of proteostasis factors could biophysically facilitate the acquisition of oncogenic mutations. Here, we experimentally evaluate the impacts of chronic HSF1 activation on the mutational landscape accessible to the quintessential oncoprotein p53. Specifically, we apply quantitative deep mutational scanning of p53 to assess how HSF1 activation shapes the mutational pathways by which p53 can escape cytotoxic pressure conferred by the small molecule nutlin-3, which is a potent antagonist of the p53 negative regulator MDM2. We find that activation of HSF1 broadly increases the fitness of dominant-negative substitutions within p53. This effect of HSF1 activation was particularly notable for non-conservative, biophysically unfavorable amino acid substitutions within buried regions of the p53 DNA-binding domain. These results indicate that chronic HSF1 activation profoundly shapes the oncogenic mutational landscape, preferentially supporting the acquisition of cancer-associated substitutions that are biophysically destabilizing. Along with providing the first experimental and quantitative insights into how HSF1 influences oncoprotein mutational spectra, these findings also implicate HSF1 inhibition as a strategy to reduce the accessibility of mutations that drive chemotherapeutic resistance and metastasis.
蛋白质突变图谱是由氨基酸取代对蛋白质稳定性、折叠或聚集动力学的影响所塑造的。反过来,这些特性又可以通过细胞蛋白质稳态网络的组成和活性来调节。热休克因子1(HSF1)是细胞质和细胞核蛋白质稳态网络的主要调节因子,动态调节细胞质和细胞核伴侣蛋白以及质量控制因子的表达以满足需求。HSF1水平和活性的慢性增加是癌细胞的显著特征。对此现象的一种合理的解释是,蛋白质稳态因子的上调可能在生物物理层面上促进致癌突变的获得。在这里,我们通过实验评估慢性HSF1激活对典型癌蛋白p53可及的突变图谱的影响。具体而言,我们对p53进行定量深度突变扫描,以评估HSF1激活如何塑造p53逃避小分子nutlin-3所赋予的细胞毒性压力的突变途径,nutlin-3是p53负调节因子MDM2的有效拮抗剂。我们发现HSF1的激活广泛地增加了p53内显性负性取代的适应性。HSF1激活的这种作用在p53 DNA结合结构域埋藏区域内的非保守、生物物理上不利的氨基酸取代中尤为明显。这些结果表明,慢性HSF1激活深刻地塑造了致癌突变图谱,优先支持获得在生物物理层面上使蛋白质不稳定的癌症相关取代。这些发现不仅首次提供了关于HSF1如何影响癌蛋白突变谱的实验性和定量性见解,还表明抑制HSF1是一种减少驱动化疗耐药性和转移的突变可及性的策略。