School of Nursing, University of Minnesota, Minneapolis, MN, United States; Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States; OptumLabs Visiting Fellow, Eden Prairie, MN, United States.
Premera Blue Cross, Mountlake Terrace, Washington, United States.
J Biomed Inform. 2022 Apr;128:104029. doi: 10.1016/j.jbi.2022.104029. Epub 2022 Feb 16.
Almost half of Americans 65 years of age and older take statins, which are highly effective in lowering low-density lipoprotein cholesterol, preventing atherosclerotic cardiovascular disease (ASCVD), and reducing all-cause mortality. Unfortunately, ∼50% of patients prescribed statins do not obtain these critical benefits because they discontinue use within one year of treatment initiation. Therefore, statin discontinuation has been identified as a major public health concern due to the increased morbidity, mortality, and healthcare costs associated with ASCVD. In clinical practice, statin-associated symptoms (SAS) often result in dose reduction or discontinuation of these life-saving medications. Currently, physician decision-making in statin prescribing typically relies on only a few patient data elements. Physicians then employ reactive strategies to manage SAS concerns after they manifest (e.g., offering an alternative statin treatment plan or a statin holiday). A preferred approach would be a proactive strategy to identify the optimal treatment plan (statin agent + dosage) to prevent/minimize SAS and statin discontinuation risks for a particular individual prior to initiating treatment. Given that using a single patient's data to identify the optimal statin regimen is inadequate to ensure that the harms of statin use are minimized, alternative tactics must be used to address this problem. In this proof-of-concept study, we explore the use of a machine-learning personalized statin treatment plan (PSTP) platform to assess the numerous statin treatment plans available and identify the optimal treatment plan to prevent/minimize harms (SAS and statin discontinuation) for an individual. Our study leveraged de-identified administrative insurance claims data from the OptumLabs® Data Warehouse, which includes medical and pharmacy claims, laboratory results, and enrollment records for more than 130 million commercial and Medicare Advantage (MA) enrollees, to successfully develop the PSTP platform. In this study, we found three results: (1) the PSTP platform recommends statin prescription with significantly lower risks of SAS and discontinuation compared with standard-practice, (2) because machine learning can consider many more dimensions of data, the performance of the proactive prescription strategy with machine-learning support is better, especially the artificial neural network approach, and (3) we demonstrate a method of incorporating optimization constraints for individualized patient-centered medicine and shared decision making. However, more research into its clinical use is needed. These promising results show the feasibility of using machine learning and big data approaches to produce personalized healthcare treatment plans and support the precision-health agenda.
大约有一半的 65 岁及以上的美国人服用他汀类药物,这些药物在降低低密度脂蛋白胆固醇、预防动脉粥样硬化性心血管疾病(ASCVD)和降低全因死亡率方面非常有效。不幸的是,约 50%的他汀类药物使用者在治疗开始后一年内停止使用,因此,他汀类药物停药已被确定为一个主要的公共卫生问题,因为 ASCVD 相关的发病率、死亡率和医疗保健成本增加。在临床实践中,他汀类药物相关症状(SAS)常导致这些救命药物的剂量减少或停药。目前,医生在开具他汀类药物处方时通常只依赖少数患者数据元素。然后,医生在症状出现后(例如,提供替代他汀类药物治疗方案或他汀类药物休假)采取被动策略来管理 SAS 问题。一种理想的方法是在开始治疗之前,主动识别最佳治疗方案(他汀类药物+剂量),以预防/最小化 SAS 和他汀类药物停药风险。鉴于仅使用单个患者的数据来确定最佳的他汀类药物方案不足以确保他汀类药物使用的危害最小化,必须使用替代策略来解决这个问题。在这项概念验证研究中,我们探索使用机器学习个性化他汀类药物治疗计划(PSTP)平台来评估众多他汀类药物治疗方案,并为个体确定预防/最小化危害(SAS 和他汀类药物停药)的最佳治疗方案。我们的研究利用 OptumLabs® Data Warehouse 的去识别行政保险索赔数据,该数据库包括超过 1.3 亿商业和医疗保险优势(MA)参保者的医疗和药房索赔、实验室结果和登记记录,成功开发了 PSTP 平台。在这项研究中,我们发现了三个结果:(1)与标准实践相比,PSTP 平台推荐的他汀类药物处方具有显著较低的 SAS 和停药风险;(2)由于机器学习可以考虑更多数据维度,因此具有机器学习支持的主动处方策略的性能更好,特别是人工神经网络方法;(3)我们展示了一种结合个体化以患者为中心的医学和共同决策的优化约束的方法。然而,还需要更多关于其临床应用的研究。这些有希望的结果表明,使用机器学习和大数据方法来制定个性化医疗保健治疗计划是可行的,并支持精准医疗议程。