Key Laboratory of Soybean Biology of Chinese Education Ministry, Harbin 150030, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China.
Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China.
J Proteomics. 2022 Apr 30;258:104528. doi: 10.1016/j.jprot.2022.104528. Epub 2022 Feb 17.
Drought and alkali stresses cause detrimental effects on plant growth and development. SnRK1 protein kinases act as key energy and stress sensors by phosphorylation-mediated signaling in the regulation of plant defense reactions against adverse environments. To understand SnRK1-dependent phosphorylation events in signaling pathways triggered by abiotic factors, we employed quantitative phosphoproteomics to compare the global changes in phosphopeptides and phosphoproteins in 2kinm mutant Arabidopsis (SnRK1.1 T-DNA knockout and SnRK1.2 knockdown by β-estradiol-induced RNAi) complemented with wild soybean GsSnRK1(wt) or dominant negative mutant GsSnRK1(K49M) in response to drought and alkali stresses. Among 4014 phosphopeptides (representing 2380 phosphoproteins) identified in this study, we finalized 74 phosphopeptides (representing 61 phosphoproteins), and 75 phosphopeptides (representing 57 phosphoproteins) showing significant changes in phosphorylation levels under drought and alkali treatments respectively. Function enrichment and protein-protein interaction analyses indicated that the differentially-expressed phosphoproteins (DPs) under drought and alkali stresses were mainly involved in signaling transduction, stress response, carbohydrate and energy metabolism, transport and membrane trafficking, RNA splicing and processing, DNA binding and gene expression, and protein synthesis/folding/degradation. These results provide assistance to identify bona fide and novel SnRK1 phosphorylation substrates and shed new light on the biological functions of SnRK1 kinase in responses to abiotic stresses. SIGNIFICANCE: These results provide assistance to identify novel SnRK1 phosphorylation substrates and regulatory proteins, and shed new light on investigating the potential roles of reversible phosphorylation in plant responses to abiotic stresses.
干旱和碱胁迫对植物的生长和发育造成有害影响。SnRK1 蛋白激酶通过磷酸化介导的信号转导作为关键的能量和应激传感器,调节植物对不利环境的防御反应。为了了解非生物因素触发的信号通路中 SnRK1 依赖性磷酸化事件,我们采用定量磷酸蛋白质组学方法比较了 2kinm 突变体拟南芥(SnRK1.1 T-DNA 敲除和β-雌二醇诱导的 RNAi 敲低 SnRK1.2)在干旱和碱胁迫下与野生大豆 GsSnRK1(wt)或显性负突变体 GsSnRK1(K49M)互补时磷酸肽和磷酸蛋白质的全局变化。在本研究中鉴定的 4014 个磷酸肽(代表 2380 个磷酸蛋白质)中,我们最终确定了 74 个磷酸肽(代表 61 个磷酸蛋白质)和 75 个磷酸肽(代表 57 个磷酸蛋白质),它们在干旱和碱处理下的磷酸化水平有显著变化。功能富集和蛋白质-蛋白质相互作用分析表明,干旱和碱胁迫下差异表达的磷酸蛋白质(DPs)主要参与信号转导、应激反应、碳水化合物和能量代谢、运输和膜转运、RNA 剪接和加工、DNA 结合和基因表达以及蛋白质合成/折叠/降解。这些结果有助于鉴定真正的和新的 SnRK1 磷酸化底物,并为 SnRK1 激酶在应对非生物胁迫中的生物学功能提供新的认识。意义:这些结果有助于鉴定新的 SnRK1 磷酸化底物和调节蛋白,并为研究可逆磷酸化在植物应对非生物胁迫中的潜在作用提供新的认识。