Suppr超能文献

设计新型 MgFeO 耦合 VO 纳米棒以协同增强可见光能量收集的四环素光降解:光致发光、动力学、内在机制和杀菌效果。

Designing novel MgFeO coupled VO nanorod for synergetic photodegradation of tetracycline with enhanced visible-light energy harvesting: Photoluminescence, kinetics, intrinsic mechanism and bactericidal effect.

机构信息

Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.

Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.

出版信息

Chemosphere. 2022 Jun;296:134012. doi: 10.1016/j.chemosphere.2022.134012. Epub 2022 Feb 17.

Abstract

The present study focused on the enhancement of degradation of an important pharmaceutical pollutant, tetracycline with the help of nano photocatalyst under visible light irradiation. The study found that the synergetic effect of novel MgFeO-VO enhanced the photocatalytic degradation of tetracycline. Here, the photocatalyst was synthesized by sonochemical technique. Scanning electron microscopy image indicates the coupling of MgFeO nanocapsules on the surface of the VO nanorod. The bandgap of MgFeO (1.8 eV) and VO (2.5 eV) was shifted to 2.32 eV in MgFeO-VO to promote visible-light harvesting and it was depicted by the UV-visible DRS. XPS was used to identify the presence of chemical states with the existence of Mg 1s, Fe 2p, V 2p, and O 1s. The electrochemical impedance spectroscopy and photoluminescence spectra indicate the better separation of charge carriers owing to the formation of type II heterojunction formation. The tetracycline (25 mg/L) was degraded with MgFeO-VO (150 mg/L) that exhibited 3.3 and 5 folds enhanced rates than its counterparts (MgFeO and VO) owing to synergism. The possible intermediate formation and degradation pathway was determined based on GC/MS analysis. TOC analysis of end products indicated maximum mineralization of tetracycline. The MgFeO-VO showed excellent recycling ability and reusability. The key photo-degradation of tetracycline was occurred by the generation of hydroxyl radicals. The MgFeO-VO exhibited high antibacterial activity that ensures the dual functionality of the prepared nanocomposites (NCs). Therefore, the present study displays MgFeO decorated VO nanorod as an ideal candidate for environmental remediation.

摘要

本研究旨在借助可见光照射下的纳米光催化剂增强一种重要的医药污染物——四环素的降解。研究发现,新型 MgFeO-VO 的协同作用增强了四环素的光催化降解。在这里,光催化剂是通过超声化学技术合成的。扫描电子显微镜图像表明 MgFeO 纳米胶囊耦合在 VO 纳米棒的表面上。MgFeO(1.8eV)和 VO(2.5eV)的能带隙在 MgFeO-VO 中分别转移到 2.32eV,以促进可见光的捕获,并通过紫外可见 DRS 进行了描述。XPS 用于识别化学状态的存在,存在 Mg 1s、Fe 2p、V 2p 和 O 1s。电化学阻抗谱和光致发光谱表明,由于形成了 II 型异质结,载流子的分离更好。在 MgFeO-VO(150mg/L)存在下,四环素(25mg/L)的降解速度比其同类物(MgFeO 和 VO)分别提高了 3.3 倍和 5 倍,这是协同作用的结果。根据 GC/MS 分析确定了可能的中间产物形成和降解途径。TOC 分析表明,四环素的最大矿化度。MgFeO-VO 表现出优异的循环能力和可重复使用性。四环素的关键光降解是由羟基自由基的产生引起的。MgFeO-VO 表现出高的抗菌活性,确保了所制备的纳米复合材料(NCs)的双重功能。因此,本研究显示 MgFeO 修饰的 VO 纳米棒是环境修复的理想候选材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验