Chemical Engineering Department, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Go Vap, Ho Chi Minh City, Vietnam.
Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
Environ Sci Pollut Res Int. 2021 Dec;28(48):68261-68275. doi: 10.1007/s11356-021-15423-y. Epub 2021 Jul 15.
Recently, metal-organic framework (MOF)-based hybrid composites have attracted significant attention in photocatalytic applications. In this work, MgFeO@UiO-66(Zr) (MFeO@UiO) composites with varying compositions were successfully synthesized via facile in situ assemblies. Depositing the UiO-66(Zr) framework onto ferrite nanoparticles yielded a composite structure having a lower bandgap energy (2.28-2.60 eV) than that of the parent UiO-66(Zr) (~3.8 eV). Moreover, the MFeO@UiO composite exhibited magnetic separation property and improved porosity. The removal experiment for tetracycline (TC) in aqueous media revealed that the MFeO@UiO composite exhibited a high total TC removal efficiency of ca. ~94% within 45-min preadsorption and 120-min visible-light illumination, which is higher than that of pristine ferrite and UiO-66(Zr). The enhanced photodegradation efficiency of MFeO@UiO is attributed to efficient interfacial charge transfer at the heterojunction and the synergistic effect between the semiconductors. Radical scavenging experiments revealed that photogenerated holes (h) and hydroxyl radicals (·OH) were the major reactive species involved in TC photodegradation. Moreover, the prepared MFeO@UiO nanocomposite showed good recyclability and renewability, making it a potential material for wastewater treatments.
最近,金属-有机骨架(MOF)基杂化复合材料在光催化应用中引起了极大的关注。在这项工作中,通过简便的原位组装成功合成了具有不同组成的 MgFeO@UiO-66(Zr)(MFeO@UiO)复合材料。将 UiO-66(Zr) 骨架沉积在铁酸盐纳米颗粒上,得到了一种具有比母体 UiO-66(Zr)(~3.8 eV)更低的能带隙能量(2.28-2.60 eV)的复合结构。此外,MFeO@UiO 复合材料具有磁性分离性能和改善的多孔性。在水介质中去除四环素(TC)的实验表明,MFeO@UiO 复合材料在 45 分钟预吸附和 120 分钟可见光照射下,对总 TC 的去除效率高达约 94%,高于原始铁酸盐和 UiO-66(Zr)。MFeO@UiO 的增强光降解效率归因于异质结处的有效界面电荷转移和半导体之间的协同效应。自由基捕获实验表明,光生空穴(h)和羟基自由基(·OH)是参与 TC 光降解的主要活性物质。此外,所制备的 MFeO@UiO 纳米复合材料表现出良好的可循环性和可再生性,使其成为废水处理的潜在材料。