Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, Andhra Pradesh, India.
Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, Andhra Pradesh, India; Department of Physics, Bapatla Engineering College, Bapatla 522 102, Andhra Pradesh, India.
Environ Res. 2023 Mar 1;220:115191. doi: 10.1016/j.envres.2022.115191. Epub 2022 Dec 29.
In the present study, novel InVO/SnWO nanocomposites with different concentrations of SnWO were successfully prepared using a facile hydrothermal technique and investigated employing a wide range of analytical methods for efficient photocatalytic degradation of tetracycline (TC). X-ray diffraction analysis showed the presence of the orthorhombic phases of both InVO and SnWO in the composite catalyst. Dispersion of SnWO nanoplates over the InVO nanosheets enhanced the synergistic interactions, improving the separation of charge carriers and their transfer. Furthermore, the formation of heterostructure expanded the absorption range and promoted visible light harvesting. The TC degradation efficiency of InVO/SnWO nanocomposite (5 mg loading of SnWO) reached 97.13% in 80 min under visible light, with the kinetic rate constants 5.51 and 7.63 times greater than those of pure InVO and SnWO, respectively. Additionally, the scavenger results proved that hydroxyl radicals and holes played a significant role in the photodegradation of TC. Furthermore, the electrochemical impedance spectroscopy (EIS) and transient photocurrent response analysis showed enhanced e/h partition efficiency. Thus, the formation of heterostructure with strong synergistic interactions can effectively transfer the excited charge carriers and shorten the reunion rate. Accordingly, the InVO/SnWO nanocomposites exhibited remarkable photocatalytic performance due to the increased number of charge carriers on the surface.
在本研究中,我们成功地使用简便的水热技术制备了具有不同 SnWO 浓度的新型 InVO/SnWO 纳米复合材料,并通过多种分析方法对其进行了研究,以实现四环素(TC)的高效光催化降解。X 射线衍射分析表明,在复合催化剂中存在 InVO 和 SnWO 的正交相。SnWO 纳米板在 InVO 纳米片上的分散增强了协同相互作用,改善了载流子的分离和转移。此外,异质结构的形成扩展了吸收范围,促进了可见光的捕获。在可见光下,InVO/SnWO 纳米复合材料(SnWO 负载量为 5mg)的 TC 降解效率在 80 分钟内达到 97.13%,其动力学速率常数分别比纯 InVO 和 SnWO 高 5.51 倍和 7.63 倍。此外,猝灭实验结果表明,羟基自由基和空穴在 TC 的光降解过程中起重要作用。此外,电化学阻抗谱(EIS)和瞬态光电流响应分析表明,电子/空穴的分离效率得到了提高。因此,由于表面上增加了载流子的数量,形成具有强协同相互作用的异质结构可以有效地转移激发的电荷载流子并缩短复合速率。因此,InVO/SnWO 纳米复合材料表现出显著的光催化性能。