Suppr超能文献

制备 InVO/SnWO 异质结构光催化剂,实现可见光下四环素的高效光催化降解。

Fabrication of InVO/SnWO heterostructured photocatalyst for efficient photocatalytic degradation of tetracycline under visible light.

机构信息

Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, Andhra Pradesh, India.

Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, Andhra Pradesh, India; Department of Physics, Bapatla Engineering College, Bapatla 522 102, Andhra Pradesh, India.

出版信息

Environ Res. 2023 Mar 1;220:115191. doi: 10.1016/j.envres.2022.115191. Epub 2022 Dec 29.

Abstract

In the present study, novel InVO/SnWO nanocomposites with different concentrations of SnWO were successfully prepared using a facile hydrothermal technique and investigated employing a wide range of analytical methods for efficient photocatalytic degradation of tetracycline (TC). X-ray diffraction analysis showed the presence of the orthorhombic phases of both InVO and SnWO in the composite catalyst. Dispersion of SnWO nanoplates over the InVO nanosheets enhanced the synergistic interactions, improving the separation of charge carriers and their transfer. Furthermore, the formation of heterostructure expanded the absorption range and promoted visible light harvesting. The TC degradation efficiency of InVO/SnWO nanocomposite (5 mg loading of SnWO) reached 97.13% in 80 min under visible light, with the kinetic rate constants 5.51 and 7.63 times greater than those of pure InVO and SnWO, respectively. Additionally, the scavenger results proved that hydroxyl radicals and holes played a significant role in the photodegradation of TC. Furthermore, the electrochemical impedance spectroscopy (EIS) and transient photocurrent response analysis showed enhanced e/h partition efficiency. Thus, the formation of heterostructure with strong synergistic interactions can effectively transfer the excited charge carriers and shorten the reunion rate. Accordingly, the InVO/SnWO nanocomposites exhibited remarkable photocatalytic performance due to the increased number of charge carriers on the surface.

摘要

在本研究中,我们成功地使用简便的水热技术制备了具有不同 SnWO 浓度的新型 InVO/SnWO 纳米复合材料,并通过多种分析方法对其进行了研究,以实现四环素(TC)的高效光催化降解。X 射线衍射分析表明,在复合催化剂中存在 InVO 和 SnWO 的正交相。SnWO 纳米板在 InVO 纳米片上的分散增强了协同相互作用,改善了载流子的分离和转移。此外,异质结构的形成扩展了吸收范围,促进了可见光的捕获。在可见光下,InVO/SnWO 纳米复合材料(SnWO 负载量为 5mg)的 TC 降解效率在 80 分钟内达到 97.13%,其动力学速率常数分别比纯 InVO 和 SnWO 高 5.51 倍和 7.63 倍。此外,猝灭实验结果表明,羟基自由基和空穴在 TC 的光降解过程中起重要作用。此外,电化学阻抗谱(EIS)和瞬态光电流响应分析表明,电子/空穴的分离效率得到了提高。因此,由于表面上增加了载流子的数量,形成具有强协同相互作用的异质结构可以有效地转移激发的电荷载流子并缩短复合速率。因此,InVO/SnWO 纳米复合材料表现出显著的光催化性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验