Suppr超能文献

多阶段新冠疫苗接种规划问题的双目标优化

Bi-objective optimization for a multi-period COVID-19 vaccination planning problem.

作者信息

Tang Lianhua, Li Yantong, Bai Danyu, Liu Tao, Coelho Leandro C

机构信息

Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China.

School of Maritime Economics and Management, Dalian Maritime University, Dalian 116026, China.

出版信息

Omega. 2022 Jul;110:102617. doi: 10.1016/j.omega.2022.102617. Epub 2022 Feb 16.

Abstract

This work investigates a new multi-period vaccination planning problem that simultaneously optimizes the total travel distance of vaccination recipients (service level) and the operational cost. An optimal plan determines, for each period, which vaccination sites to open, how many vaccination stations to launch at each site, how to assign recipients from different locations to opened sites, and the replenishment quantity of each site. We formulate this new problem as a bi-objective mixed-integer linear program (MILP). We first propose a weighted-sum and an -constraint methods, which rely on solving many single-objective MILPs and thus lose efficiency for practical-sized instances. To this end, we further develop a tailored genetic algorithm where an improved assignment strategy and a new dynamic programming method are designed to obtain good feasible solutions. Results from a case study indicate that our methods reduce the operational cost and the total travel distance by up to 9.3% and 36.6%, respectively. Managerial implications suggest enlarging the service capacity of vaccination sites can help improve the performance of the vaccination program. The enhanced performance of our heuristic is due to the newly proposed assignment strategy and dynamic programming method. Our findings demonstrate that vaccination programs during pandemics can significantly benefit from formal methods, drastically improving service levels and decreasing operational costs.

摘要

这项工作研究了一个新的多阶段疫苗接种规划问题,该问题同时优化疫苗接种者的总出行距离(服务水平)和运营成本。一个最优计划要确定每个阶段开放哪些疫苗接种点、在每个点设置多少个接种站、如何将来自不同地点的接种者分配到开放的接种点,以及每个接种点的补给量。我们将这个新问题表述为一个双目标混合整数线性规划(MILP)。我们首先提出了加权和法和ε-约束法,这两种方法依赖于求解许多单目标MILP,因此对于实际规模的实例会失去效率。为此,我们进一步开发了一种定制的遗传算法,其中设计了一种改进的分配策略和一种新的动态规划方法来获得良好的可行解。一个案例研究的结果表明,我们的方法分别将运营成本和总出行距离降低了9.3%和36.6%。管理启示表明扩大疫苗接种点的服务能力有助于提高疫苗接种计划的绩效。我们启发式算法性能的提升得益于新提出的分配策略和动态规划方法。我们的研究结果表明,大流行期间的疫苗接种计划可以从形式化方法中显著受益,大幅提高服务水平并降低运营成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45af/8848572/cd0442fc3d36/gr9_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验