Suppr超能文献

基于云的存档代谢组学数据:用于源内碎裂/注释、荟萃分析和系统生物学的资源。

Cloud-based archived metabolomics data: A resource for in-source fragmentation/annotation, meta-analysis and systems biology.

作者信息

Palermo Amelia, Huan Tao, Rinehart Duane, Rinschen Markus M, Li Shuzhao, O'Donnell Valerie B, Fahy Eoin, Xue Jingchuan, Subramaniam Shankar, Benton H Paul, Siuzdak Gary

机构信息

Scripps Center for Metabolomics, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA, 92037, USA.

Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V67 1z1, Canada.

出版信息

Anal Sci Adv. 2020 Jun;1(1):70-80. doi: 10.1002/ansa.202000042. Epub 2020 Jun 13.

Abstract

Archived metabolomics data represent a broad resource for the scientific community. However, the absence of tools for the meta-analysis of heterogeneous data types makes it challenging to perform direct comparisons in a single and cohesive workflow. Here we present a framework for the meta-analysis of metabolic pathways and interpretation with proteomic and transcriptomic data. This framework facilitates the comparison of heterogeneous types of metabolomics data from online repositories (., XCMS Online, Metabolomics Workbench, GNPS, and MetaboLights) representing tens of thousands of studies, as well as locally acquired data. As a proof of concept, we apply the workflow for the meta-analysis of i) independent colon cancer studies, further interpreted with proteomics and transcriptomics data, ii) multimodal data from Alzheimer's disease and mild cognitive impairment studies, demonstrating its high-throughput capability for the systems level interpretation of metabolic pathways. Moreover, the platform has been modified for improved knowledge dissemination through a collaboration with Metabolomics Workbench and LIPID MAPS. We envision that this meta-analysis tool will help overcome the primary bottleneck in analyzing diverse datasets and facilitate the full exploitation of archival metabolomics data for addressing a broad array of questions in metabolism research and systems biology.

摘要

存档的代谢组学数据是科学界的一项广泛资源。然而,缺乏用于对异质数据类型进行荟萃分析的工具,使得在单一且连贯的工作流程中进行直接比较具有挑战性。在此,我们提出了一个用于代谢途径荟萃分析以及与蛋白质组学和转录组学数据进行解读的框架。该框架有助于比较来自在线存储库(如XCMS Online、Metabolomics Workbench、GNPS和MetaboLights)的异质类型代谢组学数据,这些数据代表了数以万计的研究,以及本地获取的数据。作为概念验证,我们将该工作流程应用于以下方面的荟萃分析:i)独立的结肠癌研究,并进一步用蛋白质组学和转录组学数据进行解读;ii)来自阿尔茨海默病和轻度认知障碍研究的多模态数据,证明了其在代谢途径系统水平解读方面的高通量能力。此外,通过与Metabolomics Workbench和LIPID MAPS合作,对该平台进行了改进,以促进知识传播。我们设想,这种荟萃分析工具将有助于克服分析多样数据集的主要瓶颈,并促进对存档代谢组学数据的充分利用,以解决代谢研究和系统生物学中的一系列广泛问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcd7/10989098/7dabf58b1f6d/ANSA-1-70-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验