Suppr超能文献

基于代理模型的三维支架内再狭窄模型的不确定性量化。

Uncertainty quantification of a three-dimensional in-stent restenosis model with surrogate modelling.

机构信息

Computational Science Lab, Institute for Informatics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.

National Center for Cognitive Research, ITMO University, Saint Petersburg, Russia.

出版信息

J R Soc Interface. 2022 Feb;19(187):20210864. doi: 10.1098/rsif.2021.0864. Epub 2022 Feb 23.

Abstract

In-stent restenosis is a recurrence of coronary artery narrowing due to vascular injury caused by balloon dilation and stent placement. It may lead to the relapse of angina symptoms or to an acute coronary syndrome. An uncertainty quantification of a model for in-stent restenosis with four uncertain parameters (endothelium regeneration time, the threshold strain for smooth muscle cell bond breaking, blood flow velocity and the percentage of fenestration in the internal elastic lamina) is presented. Two quantities of interest were studied, namely the average cross-sectional area and the maximum relative area loss in a vessel. Owing to the high computational cost required for uncertainty quantification, a surrogate model, based on Gaussian process regression with proper orthogonal decomposition, was developed and subsequently used for model response evaluation in the uncertainty quantification. A detailed analysis of the uncertainty propagation is presented. Around 11% and 16% uncertainty is observed on the two quantities of interest, respectively, and the uncertainty estimates show that a higher fenestration mainly determines the uncertainty in the neointimal growth at the initial stage of the process. The uncertainties in blood flow velocity and endothelium regeneration time mainly determine the uncertainty in the quantities of interest at the later, clinically relevant stages of the restenosis process.

摘要

支架内再狭窄是由于球囊扩张和支架放置引起的血管损伤导致的冠状动脉狭窄复发。它可能导致心绞痛症状的复发或急性冠状动脉综合征。本文提出了一种对具有四个不确定参数(内皮细胞再生时间、平滑肌细胞键断裂的阈值应变、血流速度和内弹性膜的窗孔百分比)的支架内再狭窄模型进行不确定性量化的方法。研究了两个感兴趣的量,即血管的平均横截面面积和最大相对面积损失。由于不确定性量化需要很高的计算成本,因此开发了一种基于高斯过程回归和适当正交分解的代理模型,并随后用于不确定性量化中的模型响应评估。本文还对不确定性传播进行了详细分析。在两个感兴趣的量上,分别观察到约 11%和 16%的不确定性,不确定性估计表明,较高的窗孔主要决定了在再狭窄过程的初始阶段新生内膜生长的不确定性。血流速度和内皮细胞再生时间的不确定性主要决定了再狭窄过程中临床相关后期阶段的感兴趣量的不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5078/8867271/71c8b1982112/rsif20210864f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验