Suppr超能文献

深度学习可识别骨髓涂片中的急性早幼粒细胞白血病。

Deep learning identifies Acute Promyelocytic Leukemia in bone marrow smears.

机构信息

Department of Internal Medicine I, University Hospital Carl Gustav Carus, 01307, Dresden, Saxony, Germany.

Institute of Software and Multimedia Technology, Technical University Dresden, Dresden, Germany.

出版信息

BMC Cancer. 2022 Feb 22;22(1):201. doi: 10.1186/s12885-022-09307-8.

Abstract

BACKGROUND

Acute promyelocytic leukemia (APL) is considered a hematologic emergency due to high risk of bleeding and fatal hemorrhages being a major cause of death. Despite lower death rates reported from clinical trials, patient registry data suggest an early death rate of 20%, especially for elderly and frail patients. Therefore, reliable diagnosis is required as treatment with differentiation-inducing agents leads to cure in the majority of patients. However, diagnosis commonly relies on cytomorphology and genetic confirmation of the pathognomonic t(15;17). Yet, the latter is more time consuming and in some regions unavailable.

METHODS

In recent years, deep learning (DL) has been evaluated for medical image recognition showing outstanding capabilities in analyzing large amounts of image data and provides reliable classification results. We developed a multi-stage DL platform that automatically reads images of bone marrow smears, accurately segments cells, and subsequently predicts APL using image data only. We retrospectively identified 51 APL patients from previous multicenter trials and compared them to 1048 non-APL acute myeloid leukemia (AML) patients and 236 healthy bone marrow donor samples, respectively.

RESULTS

Our DL platform segments bone marrow cells with a mean average precision and a mean average recall of both 0.97. Further, it achieves high accuracy in detecting APL by distinguishing between APL and non-APL AML as well as APL and healthy donors with an area under the receiver operating characteristic of 0.8575 and 0.9585, respectively, using visual image data only.

CONCLUSIONS

Our study underlines not only the feasibility of DL to detect distinct morphologies that accompany a cytogenetic aberration like t(15;17) in APL, but also shows the capability of DL to abstract information from a small medical data set, i. e. 51 APL patients, and infer correct predictions. This demonstrates the suitability of DL to assist in the diagnosis of rare cancer entities. As our DL platform predicts APL from bone marrow smear images alone, this may be used to diagnose APL in regions were molecular or cytogenetic subtyping is not routinely available and raise attention to suspected cases of APL for expert evaluation.

摘要

背景

急性早幼粒细胞白血病(APL)由于出血风险高且致命性出血是主要死亡原因,被认为是一种血液学急症。尽管临床试验报告的死亡率较低,但患者登记数据显示,早期死亡率为 20%,尤其是老年和虚弱患者。因此,需要进行可靠的诊断,因为分化诱导剂治疗可使大多数患者治愈。然而,诊断通常依赖于细胞形态学和对特征性 t(15;17)的基因确认。然而,后者更耗时,在某些地区不可用。

方法

近年来,深度学习(DL)已在医学图像识别中进行了评估,在分析大量图像数据方面表现出卓越的能力,并提供可靠的分类结果。我们开发了一个多阶段的 DL 平台,该平台可自动读取骨髓涂片图像,准确分割细胞,然后仅使用图像数据预测 APL。我们回顾性地从以前的多中心试验中确定了 51 例 APL 患者,并将其与 1048 例非 APL 急性髓系白血病(AML)患者和 236 例健康骨髓供体样本进行了比较。

结果

我们的 DL 平台对骨髓细胞进行分割,平均精度的平均精度和平均召回率均为 0.97。此外,它通过区分 APL 与非 APL AML 以及 APL 与健康供体,仅使用视觉图像数据即可实现高准确性,其接受者操作特征曲线下面积分别为 0.8575 和 0.9585。

结论

我们的研究不仅强调了 DL 检测 APL 中伴随细胞遗传学异常(如 t(15;17))的独特形态的可行性,还展示了 DL 从小型医疗数据集(即 51 例 APL 患者)中提取信息并推断正确预测的能力。这证明了 DL 适合辅助诊断罕见癌症实体。由于我们的 DL 平台仅根据骨髓涂片图像预测 APL,因此可用于在没有常规进行分子或细胞遗传学亚型检测的地区诊断 APL,并引起对疑似 APL 病例的关注,以便专家进行评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd9e/8864866/cbe97485f061/12885_2022_9307_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验