Suppr超能文献

蚂蚁找巢时间收敛的上下界。

An Upper and Lower Bound for the Convergence Time of House-Hunting in Ant Colonies.

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

出版信息

J Comput Biol. 2022 Apr;29(4):344-357. doi: 10.1089/cmb.2021.0364. Epub 2022 Feb 22.

Abstract

We study the problem of house-hunting in ant colonies, where ants reach consensus on a new nest and relocate their colony to that nest, from a distributed computing perspective. We propose a house-hunting algorithm that is biologically inspired by ants. Each ant is modeled as a probabilistic agent with limited power, and there is no central control governing the ants. We show an lower bound on the running time of our proposed house-hunting algorithm, where is the number of ants. Furthermore, we show a matching upper bound of expected rounds for environments with only one candidate nest for the ants to move to. Our work provides insights into the house-hunting process, giving a perspective on how environmental factors such as nest quality or a quorum rule can affect the emigration process.

摘要

我们从分布式计算的角度研究蚁群中的找房问题,即蚂蚁就一个新巢达成共识,并将蚁群迁移到该巢。我们提出了一种受蚂蚁启发的找房算法。每个蚂蚁都被建模为一个具有有限能力的概率代理,并且没有中央控制来管理蚂蚁。我们展示了我们提出的找房算法的运行时间下界,其中 是蚂蚁的数量。此外,我们还展示了在环境中只有一个蚂蚁可以迁移到的候选巢的情况下,期望轮数的上界。我们的工作提供了对找房过程的深入了解,使我们能够从环境因素(如巢质量或法定人数规则)如何影响移民过程的角度来看待问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验