Suppr超能文献

像观察者一样学习评估图像质量。

Learning to Assess Image Quality Like an Observer.

作者信息

Yao Xiwen, Cao Qinglong, Feng Xiaoxu, Cheng Gong, Han Junwei

出版信息

IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):8324-8336. doi: 10.1109/TNNLS.2022.3149534. Epub 2023 Oct 27.

Abstract

Human observers are the ultimate receivers and evaluators of the image visual information and have powerful perception ability of visual quality with short-term global perception and long-term regional observation. Thus, it is natural to design an image quality assessment (IQA) computational model to act like an observer for accurately predicting the human perception of image quality. Inspired by this, here, we propose a novel observer-like network (OLN) to perform IQA by jointly considering the global glimpsing information and local scanning information. Specifically, the OLN consists of a global distortion perception (GDP) module and a local distortion observation (LDO) module. The GDP module is designed to mimic the observer's global perception of image quality through performing classification of images' distortion categories and levels. Simultaneously, to simulate the human local observation behavior, the LDO module attempts to gather the long-term regional observation information of the distorted images by continuously tracing the human scanpath in the observer-like scanning manner. By leveraging the bilinear pooling layer to collaborate the short-term global perception with the long-term regional observation, our network precisely predicts the quality scores of distorted images, such as human observers. Comprehensive experiments on the public datasets powerfully demonstrate that the proposed OLN achieves state-of-the-art performance.

摘要

人类观察者是图像视觉信息的最终接收者和评估者,具有强大的视觉质量感知能力,能够进行短期全局感知和长期局部观察。因此,设计一个图像质量评估(IQA)计算模型来像观察者一样准确预测人类对图像质量的感知是很自然的。受此启发,在此我们提出一种新颖的类观察者网络(OLN),通过联合考虑全局瞥视信息和局部扫描信息来执行IQA。具体而言,OLN由全局失真感知(GDP)模块和局部失真观察(LDO)模块组成。GDP模块旨在通过对图像的失真类别和程度进行分类,来模拟观察者对图像质量的全局感知。同时,为了模拟人类的局部观察行为,LDO模块试图通过以类观察者扫描的方式持续追踪人类扫描路径,来收集失真图像的长期局部观察信息。通过利用双线性池化层将短期全局感知与长期局部观察相结合,我们的网络能够像人类观察者一样精确预测失真图像的质量得分。在公共数据集上进行的综合实验有力地证明了所提出的OLN实现了当前最优的性能。

相似文献

1
Learning to Assess Image Quality Like an Observer.像观察者一样学习评估图像质量。
IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):8324-8336. doi: 10.1109/TNNLS.2022.3149534. Epub 2023 Oct 27.
7
No-reference image quality assessment using visual codebooks.基于视觉码本的无参考图像质量评估。
IEEE Trans Image Process. 2012 Jul;21(7):3129-38. doi: 10.1109/TIP.2012.2190086. Epub 2012 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验