Suppr超能文献

通过迁移学习和自监督学习预训练卷积神经网络用于临床PET图像质量的自动评估

Pre-training via Transfer Learning and Pretext Learning a Convolutional Neural Network for Automated Assessments of Clinical PET Image Quality.

作者信息

Hopson Jessica B, Neji Radhouene, Dunn Joel T, McGinnity Colm J, Flaus Anthime, Reader Andrew J, Hammers Alexander

机构信息

Department of Biomedical Engineering, King's College London.

Siemens Healthcare Limited.

出版信息

IEEE Trans Radiat Plasma Med Sci. 2023 Apr;7(4):372-381. doi: 10.1109/TRPMS.2022.3231702.

Abstract

Positron emission tomography (PET) using a fraction of the usual injected dose would reduce the amount of radioligand needed, as well as the radiation dose to patients and staff, but would compromise reconstructed image quality. For performing the same clinical tasks with such images, a clinical (rather than numerical) image quality assessment is essential. This process can be automated with convolutional neural networks (CNNs). However, the scarcity of clinical quality readings is a challenge. We hypothesise that exploiting easily available quantitative information in pretext learning tasks or using established pre-trained networks could improve CNN performance for predicting clinical assessments with limited data. CNNs were pre-trained to predict injected dose from image patches extracted from eight real patient datasets, reconstructed using between 0.5%-100% of the available data. Transfer learning with seven different patients was used to predict three clinically-scored quality metrics ranging from 0-3: global quality rating, pattern recognition and diagnostic confidence. This was compared to pre-training via a VGG16 network at varying pre-training levels. Pre-training improved test performance for this task: the mean absolute error of 0.53 (compared to 0.87 without pre-training), was within clinical scoring uncertainty. Future work may include using the CNN for novel reconstruction methods performance assessment.

摘要

使用通常注射剂量的一小部分进行正电子发射断层扫描(PET),将减少所需放射性配体的量,以及对患者和工作人员的辐射剂量,但会损害重建图像质量。要使用此类图像执行相同的临床任务,临床(而非数值)图像质量评估至关重要。这个过程可以通过卷积神经网络(CNN)实现自动化。然而,临床质量读数的稀缺是一个挑战。我们假设,在 pretext 学习任务中利用容易获得的定量信息或使用已建立的预训练网络,可以在数据有限的情况下提高 CNN 预测临床评估的性能。对 CNN 进行预训练,以根据从八个真实患者数据集中提取的图像块预测注射剂量,使用可用数据的 0.5%至 100%进行重建。使用来自七个不同患者的迁移学习来预测三个临床评分的质量指标,范围从 0 到 3:整体质量评级、模式识别和诊断置信度。将其与通过 VGG16 网络在不同预训练水平下进行的预训练进行比较。预训练提高了该任务的测试性能:平均绝对误差为 0.53(无预训练时为 0.87),在临床评分不确定性范围内。未来的工作可能包括使用 CNN 进行新型重建方法的性能评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6989/7614424/7cc07ce2da37/EMS159486-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验