Suppr超能文献

结合可解释的机器学习、人口统计学和多组学数据,为炎症性肠病的精准医疗策略提供信息。

Combining explainable machine learning, demographic and multi-omic data to inform precision medicine strategies for inflammatory bowel disease.

机构信息

IBM Research Europe-Daresbury, The Hartree Centre, Warrington, United Kingdom.

REPROCELL Europe Ltd, Glasgow, Scotland, United Kingdom.

出版信息

PLoS One. 2022 Feb 23;17(2):e0263248. doi: 10.1371/journal.pone.0263248. eCollection 2022.

Abstract

Inflammatory bowel diseases (IBDs), including ulcerative colitis and Crohn's disease, affect several million individuals worldwide. These diseases are heterogeneous at the clinical, immunological and genetic levels and result from complex host and environmental interactions. Investigating drug efficacy for IBD can improve our understanding of why treatment response can vary between patients. We propose an explainable machine learning (ML) approach that combines bioinformatics and domain insight, to integrate multi-modal data and predict inter-patient variation in drug response. Using explanation of our models, we interpret the ML models' predictions to infer unique combinations of important features associated with pharmacological responses obtained during preclinical testing of drug candidates in ex vivo patient-derived fresh tissues. Our inferred multi-modal features that are predictive of drug efficacy include multi-omic data (genomic and transcriptomic), demographic, medicinal and pharmacological data. Our aim is to understand variation in patient responses before a drug candidate moves forward to clinical trials. As a pharmacological measure of drug efficacy, we measured the reduction in the release of the inflammatory cytokine TNFα from the fresh IBD tissues in the presence/absence of test drugs. We initially explored the effects of a mitogen-activated protein kinase (MAPK) inhibitor; however, we later showed our approach can be applied to other targets, test drugs or mechanisms of interest. Our best model predicted TNFα levels from demographic, medicinal and genomic features with an error of only 4.98% on unseen patients. We incorporated transcriptomic data to validate insights from genomic features. Our results showed variations in drug effectiveness (measured by ex vivo assays) between patients that differed in gender, age or condition and linked new genetic polymorphisms to patient response variation to the anti-inflammatory treatment BIRB796 (Doramapimod). Our approach models IBD drug response while also identifying its most predictive features as part of a transparent ML precision medicine strategy.

摘要

炎症性肠病(IBD),包括溃疡性结肠炎和克罗恩病,影响全球数百万人。这些疾病在临床、免疫和遗传水平上存在异质性,是由复杂的宿主和环境相互作用引起的。研究 IBD 的药物疗效可以帮助我们更好地理解为什么治疗反应在患者之间会有所不同。我们提出了一种可解释的机器学习(ML)方法,该方法结合了生物信息学和领域内的专业知识,以整合多模态数据并预测药物反应的个体间差异。通过对我们模型的解释,我们可以解释 ML 模型的预测结果,从而推断出与候选药物在体外患者来源的新鲜组织中进行临床前测试时获得的药理反应相关的重要特征的独特组合。我们推断出的与药物疗效相关的多模态特征包括多组学数据(基因组和转录组)、人口统计学、药物学和药理学数据。我们的目标是在候选药物进入临床试验之前了解患者反应的变化。作为药物疗效的药理学衡量标准,我们测量了在存在/不存在测试药物的情况下,新鲜 IBD 组织中炎症细胞因子 TNFα 的释放减少量。我们最初探索了丝裂原活化蛋白激酶(MAPK)抑制剂的作用,但后来表明我们的方法可以应用于其他靶点、测试药物或感兴趣的机制。我们的最佳模型可以根据人口统计学、药物学和基因组特征预测 TNFα 水平,对未见患者的预测误差仅为 4.98%。我们整合了转录组数据,以验证基因组特征的见解。我们的结果表明,不同性别、年龄或病情的患者之间的药物有效性(通过体外测定)存在差异,并将新的遗传多态性与抗炎症治疗 BIRB796(Doramapimod)的患者反应变异联系起来。我们的方法模拟了 IBD 药物反应,同时也确定了其最具预测性的特征,作为透明 ML 精准医疗策略的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9b3/8865677/072ee33d6cf7/pone.0263248.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验