Cannarozzi Anna Lucia, Latiano Anna, Massimino Luca, Bossa Fabrizio, Giuliani Francesco, Riva Matteo, Ungaro Federica, Guerra Maria, Brina Anna Laura Di, Biscaglia Giuseppe, Tavano Francesca, Carparelli Sonia, Fiorino Gionata, Danese Silvio, Perri Francesco, Palmieri Orazio
Division of Gastroenterology and Endoscopy, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
Gastroenterology and Digestive Endoscopy Department, IRCCS Ospedale San Raffaele, Milan, Italy.
United European Gastroenterol J. 2024 Dec;12(10):1461-1480. doi: 10.1002/ueg2.12655. Epub 2024 Aug 31.
Various extrinsic and intrinsic factors such as drug exposures, antibiotic treatments, smoking, lifestyle, genetics, immune responses, and the gut microbiome characterize ulcerative colitis and Crohn's disease, collectively called inflammatory bowel disease (IBD). All these factors contribute to the complexity and heterogeneity of the disease etiology and pathogenesis leading to major challenges for the scientific community in improving management, medical treatments, genetic risk, and exposome impact. Understanding the interaction(s) among these factors and their effects on the immune system in IBD patients has prompted advances in multi-omics research, the development of new tools as part of system biology, and more recently, artificial intelligence (AI) approaches. These innovative approaches, supported by the availability of big data and large volumes of digital medical datasets, hold promise in better understanding the natural histories, predictors of disease development, severity, complications and treatment outcomes in complex diseases, providing decision support to doctors, and promising to bring us closer to the realization of the "precision medicine" paradigm. This review aims to provide an overview of current IBD omics based on both individual (genomics, transcriptomics, proteomics, metagenomics) and multi-omics levels, highlighting how AI can facilitate the integration of heterogeneous data to summarize our current understanding of the disease and to identify current gaps in knowledge to inform upcoming research in this field.
多种外在和内在因素,如药物暴露、抗生素治疗、吸烟、生活方式、遗传学、免疫反应和肠道微生物群,是溃疡性结肠炎和克罗恩病的特征,这两种疾病统称为炎症性肠病(IBD)。所有这些因素导致了疾病病因和发病机制的复杂性和异质性,给科学界在改善管理、药物治疗、遗传风险和暴露组影响方面带来了重大挑战。了解这些因素之间的相互作用及其对IBD患者免疫系统的影响,推动了多组学研究的进展、作为系统生物学一部分的新工具的开发,以及最近人工智能(AI)方法的应用。这些创新方法,在大数据和大量数字医疗数据集的支持下,有望更好地理解复杂疾病的自然史、疾病发展的预测因素、严重程度、并发症和治疗结果,为医生提供决策支持,并有望使我们更接近实现“精准医学”范式。本综述旨在概述当前基于个体(基因组学、转录组学、蛋白质组学、宏基因组学)和多组学水平的IBD组学,强调人工智能如何促进异质数据的整合,以总结我们目前对该疾病的理解,并识别当前知识空白,为该领域即将开展的研究提供信息。
United European Gastroenterol J. 2024-12
World J Gastroenterol. 2021-5-7
Nurs N Z. 2017-3
World J Gastroenterol. 2024-7-21
Nat Rev Immunol. 2008-6
Diagnostics (Basel). 2025-5-22
United European Gastroenterol J. 2024-12
Comput Struct Biotechnol J. 2024-9-11
Crohns Colitis 360. 2024-5-16
Lancet Gastroenterol Hepatol. 2024-8
mSystems. 2024-1-23
Int J Mol Sci. 2023-10-5