Suppr超能文献

可解释人工智能揭示了与表型差异相关的皮肤微生物组组成变化。

Explainable AI reveals changes in skin microbiome composition linked to phenotypic differences.

机构信息

The Hartree Centre, Sci-Tech Daresbury, IBM Research, Daresbury, WA4 4AD, UK.

T.J. Watson Research Center, IBM Research, Yorktown Heights, NY, 10598, USA.

出版信息

Sci Rep. 2021 Feb 25;11(1):4565. doi: 10.1038/s41598-021-83922-6.

Abstract

Alterations in the human microbiome have been observed in a variety of conditions such as asthma, gingivitis, dermatitis and cancer, and much remains to be learned about the links between the microbiome and human health. The fusion of artificial intelligence with rich microbiome datasets can offer an improved understanding of the microbiome's role in human health. To gain actionable insights it is essential to consider both the predictive power and the transparency of the models by providing explanations for the predictions. We combine the collection of leg skin microbiome samples from two healthy cohorts of women with the application of an explainable artificial intelligence (EAI) approach that provides accurate predictions of phenotypes with explanations. The explanations are expressed in terms of variations in the relative abundance of key microbes that drive the predictions. We predict skin hydration, subject's age, pre/post-menopausal status and smoking status from the leg skin microbiome. The changes in microbial composition linked to skin hydration can accelerate the development of personalized treatments for healthy skin, while those associated with age may offer insights into the skin aging process. The leg microbiome signatures associated with smoking and menopausal status are consistent with previous findings from oral/respiratory tract microbiomes and vaginal/gut microbiomes respectively. This suggests that easily accessible microbiome samples could be used to investigate health-related phenotypes, offering potential for non-invasive diagnosis and condition monitoring. Our EAI approach sets the stage for new work focused on understanding the complex relationships between microbial communities and phenotypes. Our approach can be applied to predict any condition from microbiome samples and has the potential to accelerate the development of microbiome-based personalized therapeutics and non-invasive diagnostics.

摘要

人类微生物组的改变在各种情况下都有观察到,如哮喘、牙龈炎、皮炎和癌症,而微生物组与人类健康之间的联系还有很多需要了解。人工智能与丰富的微生物组数据集的融合,可以提供对微生物组在人类健康中作用的更好理解。为了获得可操作的见解,必须考虑模型的预测能力和透明度,并为预测提供解释。我们结合了来自两个健康女性队列的腿部皮肤微生物组样本的收集,并应用了一种可解释的人工智能 (EAI) 方法,该方法提供了具有解释的表型的准确预测。解释是用驱动预测的关键微生物相对丰度的变化来表示的。我们从腿部皮肤微生物组预测皮肤水分、受试者年龄、绝经前后状态和吸烟状态。与皮肤水分相关的微生物组成变化可以加速开发针对健康皮肤的个性化治疗方法,而与年龄相关的变化可能为皮肤衰老过程提供深入了解。与吸烟和绝经状态相关的腿部微生物组特征与口腔/呼吸道微生物组和阴道/肠道微生物组的先前发现一致。这表明,容易获得的微生物组样本可用于研究与健康相关的表型,为非侵入性诊断和病情监测提供了潜力。我们的 EAI 方法为专注于理解微生物群落和表型之间复杂关系的新工作奠定了基础。我们的方法可用于从微生物组样本预测任何情况,并有可能加速基于微生物组的个性化治疗和非侵入性诊断的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7498/7907326/d1d0cbfb248d/41598_2021_83922_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验