Suppr超能文献

通过单细胞技术区分活化的 T 调节细胞和 T 常规细胞。

Distinguishing activated T regulatory cell and T conventional cells by single-cell technologies.

机构信息

Center for Regenerative Therapies Dresden, Faculty of Medicine, TU Dresden, Dresden, Germany.

German Center for Diabetes Research (DZD), Faculty of Medicine, Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden, Dresden, Germany.

出版信息

Immunology. 2022 May;166(1):121-137. doi: 10.1111/imm.13460. Epub 2022 Mar 2.

Abstract

Resting conventional T cells (Tconv) can be distinguished from T regulatory cells (Treg) by the canonical markers FOXP3, CD25 and CD127. However, the expression of these proteins alters after T-cell activation leading to overlap between Tconv and Treg. The objective of this study was to distinguish resting and antigen-responsive T effector (Tconv) and Treg using single-cell technologies. CD4 Treg and Tconv cells were stimulated with antigen and responsive and non-responsive populations processed for targeted and non-targeted single-cell RNAseq. Machine learning was used to generate a limited set of genes that could distinguish responding and non-responding Treg and Tconv cells and which was used for single-cell multiplex qPCR and to design a flow cytometry panel. Targeted scRNAseq clearly distinguished the four-cell populations. A minimal set of 27 genes was identified by machine learning algorithms to provide discrimination of the four populations at >95% accuracy. In all, 15 of the genes were validated to be differentially expressed by single-cell multiplex qPCR. Discrimination of responding Treg from responding Tconv could be achieved by a flow cytometry strategy that included staining for CD25, CD127, FOXP3, IKZF2, ITGA4, and the novel marker TRIM which was strongly expressed in Tconv and weakly expressed in both responding and non-responding Treg. A minimal set of genes was identified that discriminates responding and non-responding CD4 Treg and Tconv cells and, which have identified TRIM as a marker to distinguish Treg by flow cytometry.

摘要

静止的常规 T 细胞 (Tconv) 可以通过经典标志物 FOXP3、CD25 和 CD127 与 T 调节细胞 (Treg) 区分开来。然而,这些蛋白的表达在 T 细胞激活后会发生改变,导致 Tconv 和 Treg 之间存在重叠。本研究的目的是使用单细胞技术区分静止和抗原反应性 T 效应器 (Tconv) 和 Treg。用抗原刺激 CD4 Treg 和 Tconv 细胞,处理有反应和无反应的群体,进行靶向和非靶向单细胞 RNAseq。使用机器学习生成一组有限的基因,这些基因可以区分有反应和无反应的 Treg 和 Tconv 细胞,并用于单细胞多重 qPCR,并设计流式细胞术面板。靶向 scRNAseq 清楚地区分了这四种细胞群体。机器学习算法确定了一组最小的 27 个基因,可以以>95%的准确率区分这四种群体。总的来说,通过单细胞多重 qPCR 验证了其中 15 个基因的差异表达。通过流式细胞术策略,可以区分反应性 Treg 和反应性 Tconv,该策略包括 CD25、CD127、FOXP3、IKZF2、ITGA4 和新型标志物 TRIM 的染色,TRIM 在 Tconv 中强烈表达,在反应性和非反应性 Treg 中均弱表达。确定了一组最小的基因,可以区分有反应和无反应的 CD4 Treg 和 Tconv 细胞,并确定 TRIM 是通过流式细胞术区分 Treg 的标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae15/9426617/21674d550deb/IMM-166-121-g007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验