Suppr超能文献

多模态单细胞方法揭示了 T 细胞异质性。

Multimodal single-cell approaches shed light on T cell heterogeneity.

机构信息

Center for Data Sciences, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115 USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.

Center for Data Sciences, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.

出版信息

Curr Opin Immunol. 2019 Dec;61:17-25. doi: 10.1016/j.coi.2019.07.002. Epub 2019 Aug 17.

Abstract

Single-cell methods have revolutionized the study of T cell biology by enabling the identification and characterization of individual cells. This has led to a deeper understanding of T cell heterogeneity by generating functionally relevant measurements - like gene expression, surface markers, chromatin accessibility, T cell receptor sequences - in individual cells. While these methods are independently valuable, they can be augmented when applied jointly, either on separate cells from the same sample or on the same cells. Multimodal approaches are already being deployed to characterize T cells in diverse disease contexts and demonstrate the value of having multiple insights into a cell's function. But, these data sets pose new statistical challenges for integration and joint analysis.

摘要

单细胞方法通过识别和描述单个细胞,彻底改变了 T 细胞生物学的研究方式。这使得我们能够通过对单个细胞进行功能相关的测量,如基因表达、表面标志物、染色质可及性、T 细胞受体序列等,更深入地了解 T 细胞异质性。虽然这些方法各自都具有重要价值,但当它们联合应用时,无论是在同一样本的不同细胞上,还是在同一细胞上,都可以得到增强。多模态方法已经被用于在不同疾病环境下对 T 细胞进行特征描述,并证明了对细胞功能有多种深入了解的价值。但是,这些数据集给整合和联合分析带来了新的统计挑战。

相似文献

1
Multimodal single-cell approaches shed light on T cell heterogeneity.多模态单细胞方法揭示了 T 细胞异质性。
Curr Opin Immunol. 2019 Dec;61:17-25. doi: 10.1016/j.coi.2019.07.002. Epub 2019 Aug 17.
5
Use of Mass Cytometry to Profile Human T Cell Exhaustion.应用液质联用技术分析人 T 细胞耗竭。
Front Immunol. 2020 Jan 22;10:3039. doi: 10.3389/fimmu.2019.03039. eCollection 2019.

引用本文的文献

10
Applications of Single-Cell Omics to Dissect Tumor Microenvironment.单细胞组学在剖析肿瘤微环境中的应用
Front Genet. 2020 Nov 27;11:548719. doi: 10.3389/fgene.2020.548719. eCollection 2020.

本文引用的文献

3
Comprehensive Integration of Single-Cell Data.单细胞数据的综合整合。
Cell. 2019 Jun 13;177(7):1888-1902.e21. doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验