Suppr超能文献

预测肝移植后慢加急性肝衰竭患者短期生存的模型。

Models to predict the short-term survival of acute-on-chronic liver failure patients following liver transplantation.

机构信息

Transplantation Center, Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.

出版信息

BMC Gastroenterol. 2022 Feb 23;22(1):80. doi: 10.1186/s12876-022-02164-6.

Abstract

BACKGROUND

Acute-on-chronic liver failure (ACLF) is featured with rapid deterioration of chronic liver disease and poor short-term prognosis. Liver transplantation (LT) is recognized as the curative option for ACLF. However, there is no standard in the prediction of the short-term survival among ACLF patients following LT.

METHOD

Preoperative data of 132 ACLF patients receiving LT at our center were investigated retrospectively. Cox regression was performed to determine the risk factors for short-term survival among ACLF patients following LT. Five conventional score systems (the MELD score, ABIC, CLIF-C OFs, CLIF-SOFAs and CLIF-C ACLFs) in forecasting short-term survival were estimated through the receiver operating characteristic (ROC). Four machine-learning (ML) models, including support vector machine (SVM), logistic regression (LR), multi-layer perceptron (MLP) and random forest (RF), were also established for short-term survival prediction.

RESULTS

Cox regression analysis demonstrated that creatinine (Cr) and international normalized ratio (INR) were the two independent predictors for short-term survival among ACLF patients following LT. The ROC curves showed that the area under the curve (AUC) ML models was much larger than that of conventional models in predicting short-term survival. Among conventional models the model for end stage liver disease (MELD) score had the highest AUC (0.704), while among ML models the RF model yielded the largest AUC (0.940).

CONCLUSION

Compared with the traditional methods, the ML models showed good performance in the prediction of short-term prognosis among ACLF patients following LT and the RF model perform the best. It is promising to optimize organ allocation and promote transplant survival based on the prediction of ML models.

摘要

背景

慢加急性肝衰竭(ACLF)以慢性肝病的快速恶化和短期预后不良为特征。肝移植(LT)被认为是 ACLF 的治疗选择。然而,对于 LT 后 ACLF 患者的短期生存预测尚无标准。

方法

回顾性调查了在我院接受 LT 的 132 例 ACLF 患者的术前数据。Cox 回归用于确定 LT 后 ACLF 患者短期生存的危险因素。通过接收者操作特征(ROC)曲线评估了 5 种传统评分系统(MELD 评分、ABIC、CLIF-C OFs、CLIF-SOFAs 和 CLIF-C ACLFs)预测短期生存的能力。还建立了 4 种机器学习(ML)模型,包括支持向量机(SVM)、逻辑回归(LR)、多层感知机(MLP)和随机森林(RF),用于短期生存预测。

结果

Cox 回归分析表明,肌酐(Cr)和国际标准化比值(INR)是 LT 后 ACLF 患者短期生存的两个独立预测因素。ROC 曲线显示,ML 模型的曲线下面积(AUC)大于传统模型,用于预测短期生存。在传统模型中,终末期肝病模型(MELD)评分的 AUC 最高(0.704),而在 ML 模型中,RF 模型的 AUC 最大(0.940)。

结论

与传统方法相比,ML 模型在预测 LT 后 ACLF 患者的短期预后方面表现出良好的性能,RF 模型表现最佳。基于 ML 模型的预测,优化器官分配和促进移植生存是有希望的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e07b/8867783/9568e5a1e675/12876_2022_2164_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验