Suppr超能文献

采用基于质谱的多重靶向蛋白质组学技术定量检测中高丰度的癌症、感染/炎症和结核病标志物,以诊断胸腔积液。

Diagnosing pleural effusions using mass spectrometry-based multiplexed targeted proteomics quantitating mid- to high-abundance markers of cancer, infection/inflammation and tuberculosis.

机构信息

Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics - Polish Academy of Sciences, Warsaw, Poland.

Mazovian Center of Pulmonary Disease and Tuberculosis Treatment, Otwock, Poland.

出版信息

Sci Rep. 2022 Feb 23;12(1):3054. doi: 10.1038/s41598-022-06924-y.

Abstract

Pleural effusion (PE) is excess fluid in the pleural cavity that stems from lung cancer, other diseases like extra-pulmonary tuberculosis (TB) and pneumonia, or from a variety of benign conditions. Diagnosing its cause is often a clinical challenge and we have applied targeted proteomic methods with the aim of aiding the determination of PE etiology. We developed a mass spectrometry (MS)-based multiple reaction monitoring (MRM)-protein-panel assay to precisely quantitate 53 established cancer-markers, TB-markers, and infection/inflammation-markers currently assessed individually in the clinic, as well as potential biomarkers suggested in the literature for PE classification. Since MS-based proteomic assays are on the cusp of entering clinical use, we assessed the merits of such an approach and this marker panel based on a single-center 209 patient cohort with established etiology. We observed groups of infection/inflammation markers (ADA2, WARS, CXCL10, S100A9, VIM, APCS, LGALS1, CRP, MMP9, and LDHA) that specifically discriminate TB-PEs and other-infectious-PEs, and a number of cancer markers (CDH1, MUC1/CA-15-3, THBS4, MSLN, HPX, SVEP1, SPINT1, CK-18, and CK-8) that discriminate cancerous-PEs. Some previously suggested potential biomarkers did not show any significant difference. Using a Decision Tree/Multiclass classification method, we show a very good discrimination ability for classifying PEs into one of four types: cancerous-PEs (AUC: 0.863), tuberculous-PEs (AUC of 0.859), other-infectious-PEs (AUC of 0.863), and benign-PEs (AUC: 0.842). This type of approach and the indicated markers have the potential to assist in clinical diagnosis in the future, and help with the difficult decision on therapy guidance.

摘要

胸腔积液(PE)是指源自肺癌、肺外结核(TB)和肺炎等其他疾病,或源自多种良性疾病的胸膜腔内过多液体。诊断其病因通常是一个临床挑战,我们应用了靶向蛋白质组学方法,旨在辅助确定 PE 的病因。我们开发了一种基于质谱(MS)的多重反应监测(MRM)-蛋白谱分析检测方法,精确定量 53 种已建立的癌症标志物、TB 标志物和感染/炎症标志物,这些标志物目前在临床上单独评估,以及文献中建议用于 PE 分类的潜在生物标志物。由于基于 MS 的蛋白质组学检测方法即将进入临床应用,我们评估了这种方法和这个标志物面板的优点,该面板基于一个具有明确病因的单中心 209 名患者队列。我们观察到一组感染/炎症标志物(ADA2、WARS、CXCL10、S100A9、VIM、APCS、LGALS1、CRP、MMP9 和 LDHA),它们可特异性区分 TB-PEs 和其他感染性-PEs,以及一些癌症标志物(CDH1、MUC1/CA-15-3、THBS4、MSLN、HPX、SVEP1、SPINT1、CK-18 和 CK-8),可区分癌性-PEs。一些先前提出的潜在生物标志物没有显示出任何显著差异。使用决策树/多类分类方法,我们显示出对将 PEs 分类为以下四种类型之一的非常好的区分能力:癌性-PEs(AUC:0.863)、结核性-PEs(AUC:0.859)、其他感染性-PEs(AUC:0.863)和良性-PEs(AUC:0.842)。这种方法和所指出的标志物有可能在未来辅助临床诊断,并有助于在治疗指导方面做出困难的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01bb/8866415/517af5e09952/41598_2022_6924_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验