Suppr超能文献

ProPickML:通过无标记靶向蛋白质组学中的自动峰挑选推进临床诊断

ProPickML: Advancing Clinical Diagnostics with Automated Peak Picking in Label-Free Targeted Proteomics.

作者信息

Coyle Elloise, Leclercq Mickaël, Gotti Clarisse, Roux-Dalvai Florence, Droit Arnaud

机构信息

Computational Biology Laboratory, Centre de recherche du CHU de Québec, Université Laval, Québec City, Québec G1V 4G2, Canada.

Proteomics Platform, Centre de recherche du CHU de Québec, Université Laval, Québec City, Québec G1V 4G2, Canada.

出版信息

J Proteome Res. 2025 Jan 3;24(1):244-255. doi: 10.1021/acs.jproteome.4c00689. Epub 2024 Dec 7.

Abstract

In targeted proteomics utilizing Selected Reaction Monitoring (SRM), the precise detection of specific peptides within complex mixtures remains a significant challenge, particularly due to noise and interference in chromatograms. Existing methodologies, such as isotopic labeling and scoring algorithms, offer partial solutions but are constrained by high run times and elevated false discovery rates. To address these limitations, we have developed ProPickML a machine learning-based tool designed to accurately identify peptide peaks across diverse data sets, independent of the assumed presence of the peptide. This model was trained on a manually labeled data set and subsequently validated to assess its predictive accuracy. The results demonstrate that the model reliably identifies peptide peaks in the presence of noise, achieving a Matthews correlation coefficient (MCC) of 0.81 on an independent test data set, surpassing mProphet's MCC of 0.71. Implemented in R as ProPickML, this tool offers a competitive, cost-effective alternative to existing techniques, significantly reducing reliance on isotopic labeling and enhancing the accuracy of peptide identification in SRM workflows.

摘要

在利用选择反应监测(SRM)的靶向蛋白质组学中,在复杂混合物中精确检测特定肽段仍然是一项重大挑战,尤其是由于色谱图中的噪声和干扰。现有的方法,如同位素标记和评分算法,提供了部分解决方案,但受到运行时间长和错误发现率高的限制。为了解决这些局限性,我们开发了ProPickML,这是一种基于机器学习的工具,旨在准确识别不同数据集中的肽峰,而不依赖于肽的假定存在。该模型在一个手动标记的数据集上进行训练,随后进行验证以评估其预测准确性。结果表明,该模型在存在噪声的情况下能够可靠地识别肽峰,在独立测试数据集上的马修斯相关系数(MCC)达到0.81,超过了mProphet的0.71。该工具以ProPickML的形式在R中实现,为现有技术提供了一种具有竞争力、成本效益高的替代方案,显著减少了对同位素标记的依赖,并提高了SRM工作流程中肽段鉴定的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd92/11705220/cf397f0b491e/pr4c00689_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验