Talebi Asra Sadat, Rajabi Hossein, Watabe Hiroshi
Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan.
Ann Nucl Med. 2022 May;36(5):479-487. doi: 10.1007/s12149-022-01727-7. Epub 2022 Feb 23.
Transarterial Radioembolization (TARE) with Y-loaded glass microspheres is a locoregional treatment option for Hepatocellular Carcinoma (HCC). Post-treatment Y bremsstrahlung imaging using Single-Photon Emission Tomography (SPECT) is currently a gold-standard imaging modality for quantifying the delivered dose. However, the nature of bremsstrahlung photons causes difficulty for dose estimation using SPECT imaging. This work aimed to investigate the possibility of using glass microspheres loaded with Y and Nanoparticles (NPs) to improve the quantification of delivered doses.
The Monte Carlo codes were used to simulate the post-TARE Y planar imaging. Planar images from bremsstrahlung photons and characteristic X-rays are acquired when 0, 1.2 mol/L, 2.4 mol/L, and 4.8 mol/L of Gold (Au), Hafnium (Hf), and Gadolinium (Gd) NPs are incorporated into the glass microspheres. We evaluated the quality of acquired images by calculating sensitivity and Signal-to-Background Ratio (SBR). Therapeutic effects of NPs were evaluated by calculation of Dose Enhancement Ratio (DER) in tumoral and non-tumoral liver tissues.
The in silico results showed that the sensitivity values of bremsstrahlung and characteristic X-ray planar images increased significantly as the NPs concentration increased in the glass microspheres. The SBR values decreased as the NPs concentration increased for the bremsstrahlung planar images. In contrast, the SBR values increased for the characteristic X-ray planar images when Hf and Gd were incorporated into the glass microspheres. The DER values decreased in the tumoral and non-tumoral liver tissues as the NPs concentration increased. The maximum dose reduction was observed at the NPs concentration of 4.8 mol/L (≈ 7%).
The incorporation of Au, Hf, and Gd NPs into the glass microspheres improved the quality and quantity of post-TARE planar images. Also, treatment efficiency was decreased significantly at NPs concentration > 4.8 mol/L.
使用载钇玻璃微球进行经动脉放射性栓塞(TARE)是肝细胞癌(HCC)的一种局部治疗选择。使用单光子发射断层扫描(SPECT)进行治疗后钇轫致辐射成像目前是定量输送剂量的金标准成像方式。然而,轫致辐射光子的特性给使用SPECT成像进行剂量估计带来了困难。这项工作旨在研究使用载钇和纳米颗粒(NPs)的玻璃微球来改善输送剂量定量的可能性。
使用蒙特卡罗代码模拟TARE后钇平面成像。当将0、1.2 mol/L、2.4 mol/L和4.8 mol/L的金(Au)、铪(Hf)和钆(Gd)纳米颗粒掺入玻璃微球时,采集来自轫致辐射光子和特征X射线的平面图像。我们通过计算灵敏度和信号背景比(SBR)来评估采集图像的质量。通过计算肿瘤和非肿瘤肝脏组织中的剂量增强比(DER)来评估纳米颗粒的治疗效果。
计算机模拟结果表明,随着玻璃微球中纳米颗粒浓度的增加,轫致辐射和特征X射线平面图像的灵敏度值显著增加。对于轫致辐射平面图像,SBR值随着纳米颗粒浓度的增加而降低。相比之下,当将Hf和Gd掺入玻璃微球时,特征X射线平面图像的SBR值增加。随着纳米颗粒浓度的增加,肿瘤和非肿瘤肝脏组织中的DER值降低。在纳米颗粒浓度为4.8 mol/L时观察到最大剂量降低(约7%)。
将Au、Hf和Gd纳米颗粒掺入玻璃微球可提高TARE后平面图像的质量和数量。此外,当纳米颗粒浓度>4.8 mol/L时,治疗效率显著降低。