Suppr超能文献

在非结构化临床文档中识别糖尿病前期讨论:一种自然语言处理算法的验证

Identification of Prediabetes Discussions in Unstructured Clinical Documentation: Validation of a Natural Language Processing Algorithm.

作者信息

Schwartz Jessica L, Tseng Eva, Maruthur Nisa M, Rouhizadeh Masoud

机构信息

Division of General Internal Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States.

Division of Hospital Medicine, Johns Hopkins Hospital, Baltimore, MD, United States.

出版信息

JMIR Med Inform. 2022 Feb 24;10(2):e29803. doi: 10.2196/29803.

Abstract

BACKGROUND

Prediabetes affects 1 in 3 US adults. Most are not receiving evidence-based interventions, so understanding how providers discuss prediabetes with patients will inform how to improve their care.

OBJECTIVE

This study aimed to develop a natural language processing (NLP) algorithm using machine learning techniques to identify discussions of prediabetes in narrative documentation.

METHODS

We developed and applied a keyword search strategy to identify discussions of prediabetes in clinical documentation for patients with prediabetes. We manually reviewed matching notes to determine which represented actual prediabetes discussions. We applied 7 machine learning models against our manual annotation.

RESULTS

Machine learning classifiers were able to achieve classification results that were close to human performance with up to 98% precision and recall to identify prediabetes discussions in clinical documentation.

CONCLUSIONS

We demonstrated that prediabetes discussions can be accurately identified using an NLP algorithm. This approach can be used to understand and identify prediabetes management practices in primary care, thereby informing interventions to improve guideline-concordant care.

摘要

背景

美国三分之一的成年人患有糖尿病前期。大多数人未接受循证干预,因此了解医疗服务提供者如何与患者讨论糖尿病前期将为如何改善其护理提供信息。

目的

本研究旨在开发一种使用机器学习技术的自然语言处理(NLP)算法,以识别叙述性文档中有关糖尿病前期的讨论。

方法

我们开发并应用了一种关键词搜索策略,以识别糖尿病前期患者临床文档中有关糖尿病前期的讨论。我们人工审核匹配的记录,以确定哪些代表实际的糖尿病前期讨论。我们针对人工标注应用了7种机器学习模型。

结果

机器学习分类器能够实现接近人类水平的分类结果,在识别临床文档中糖尿病前期讨论时,精确率和召回率高达98%。

结论

我们证明,使用NLP算法可以准确识别糖尿病前期讨论。这种方法可用于了解和识别初级保健中糖尿病前期的管理实践,从而为改善符合指南的护理的干预措施提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0aa/8914791/a17514808ad4/medinform_v10i2e29803_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验