Suppr超能文献

你所需的仅一位临床医生——心脏磁共振成像测量提取:深度学习算法开发

One Clinician Is All You Need-Cardiac Magnetic Resonance Imaging Measurement Extraction: Deep Learning Algorithm Development.

作者信息

Singh Pulkit, Haimovich Julian, Reeder Christopher, Khurshid Shaan, Lau Emily S, Cunningham Jonathan W, Philippakis Anthony, Anderson Christopher D, Ho Jennifer E, Lubitz Steven A, Batra Puneet

机构信息

Data Sciences Platform, The Broad Institute of Harvard and MIT, Cambridge, MA, United States.

Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.

出版信息

JMIR Med Inform. 2022 Sep 16;10(9):e38178. doi: 10.2196/38178.

Abstract

BACKGROUND

Cardiac magnetic resonance imaging (CMR) is a powerful diagnostic modality that provides detailed quantitative assessment of cardiac anatomy and function. Automated extraction of CMR measurements from clinical reports that are typically stored as unstructured text in electronic health record systems would facilitate their use in research. Existing machine learning approaches either rely on large quantities of expert annotation or require the development of engineered rules that are time-consuming and are specific to the setting in which they were developed.

OBJECTIVE

We hypothesize that the use of pretrained transformer-based language models may enable label-efficient numerical extraction from clinical text without the need for heuristics or large quantities of expert annotations. Here, we fine-tuned pretrained transformer-based language models on a small quantity of CMR annotations to extract 21 CMR measurements. We assessed the effect of clinical pretraining to reduce labeling needs and explored alternative representations of numerical inputs to improve performance.

METHODS

Our study sample comprised 99,252 patients that received longitudinal cardiology care in a multi-institutional health care system. There were 12,720 available CMR reports from 9280 patients. We adapted PRAnCER (Platform Enabling Rapid Annotation for Clinical Entity Recognition), an annotation tool for clinical text, to collect annotations from a study clinician on 370 reports. We experimented with 5 different representations of numerical quantities and several model weight initializations. We evaluated extraction performance using macroaveraged F-scores across the measurements of interest. We applied the best-performing model to extract measurements from the remaining CMR reports in the study sample and evaluated established associations between selected extracted measures with clinical outcomes to demonstrate validity.

RESULTS

All combinations of weight initializations and numerical representations obtained excellent performance on the gold-standard test set, suggesting that transformer models fine-tuned on a small set of annotations can effectively extract numerical quantities. Our results further indicate that custom numerical representations did not appear to have a significant impact on extraction performance. The best-performing model achieved a macroaveraged F-score of 0.957 across the evaluated CMR measurements (range 0.92 for the lowest-performing measure of left atrial anterior-posterior dimension to 1.0 for the highest-performing measures of left ventricular end systolic volume index and left ventricular end systolic diameter). Application of the best-performing model to the study cohort yielded 136,407 measurements from all available reports in the study sample. We observed expected associations between extracted left ventricular mass index, left ventricular ejection fraction, and right ventricular ejection fraction with clinical outcomes like atrial fibrillation, heart failure, and mortality.

CONCLUSIONS

This study demonstrated that a domain-agnostic pretrained transformer model is able to effectively extract quantitative clinical measurements from diagnostic reports with a relatively small number of gold-standard annotations. The proposed workflow may serve as a roadmap for other quantitative entity extraction.

摘要

背景

心脏磁共振成像(CMR)是一种强大的诊断方式,可对心脏解剖结构和功能进行详细的定量评估。从通常以非结构化文本形式存储在电子健康记录系统中的临床报告中自动提取CMR测量值,将有助于其在研究中的应用。现有的机器学习方法要么依赖大量专家注释,要么需要制定耗时且特定于其开发环境的工程规则。

目的

我们假设使用预训练的基于Transformer的语言模型可以从临床文本中高效提取数值,而无需启发式方法或大量专家注释。在此,我们在少量CMR注释上对预训练的基于Transformer的语言模型进行微调,以提取21个CMR测量值。我们评估了临床预训练对减少标注需求的效果,并探索了数值输入的替代表示形式以提高性能。

方法

我们的研究样本包括在多机构医疗系统中接受纵向心脏病护理的99252名患者。有来自9280名患者的12720份可用CMR报告。我们改编了PRAnCER(临床实体识别快速注释平台),这是一种临床文本注释工具,让一名研究临床医生对370份报告进行注释。我们试验了5种不同的数值表示形式和几种模型权重初始化方法。我们使用感兴趣测量值的宏平均F分数评估提取性能。我们应用性能最佳的模型从研究样本中剩余的CMR报告中提取测量值,并评估选定提取测量值与临床结局之间已确立的关联,以证明其有效性。

结果

权重初始化和数值表示的所有组合在金标准测试集上均表现出色,这表明在少量注释上微调的Transformer模型能够有效地提取数值。我们的结果进一步表明,自定义数值表示形式似乎对提取性能没有显著影响。在评估的CMR测量值中,性能最佳的模型实现了0.957的宏平均F分数(范围从左心房前后径最低性能测量值的0.92到左心室收缩末期容积指数和左心室收缩末期直径最高性能测量值的1.0)。将性能最佳的模型应用于研究队列,从研究样本中的所有可用报告中获得了136407个测量值。我们观察到提取的左心室质量指数、左心室射血分数和右心室射血分数与房颤、心力衰竭和死亡率等临床结局之间存在预期的关联。

结论

本研究表明,一个与领域无关的预训练Transformer模型能够通过相对较少数量的金标准注释从诊断报告中有效地提取定量临床测量值。所提出的工作流程可为其他定量实体提取提供路线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70e3/9526125/c0b4e1d6d69e/medinform_v10i9e38178_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验