Suppr超能文献

通过使用卷积神经网络分析大窗口的手腕运动来进行进食事件的自上而下检测。

Top-Down Detection of Eating Episodes by Analyzing Large Windows of Wrist Motion Using a Convolutional Neural Network.

作者信息

Sharma Surya, Hoover Adam

机构信息

Department of Electrical and Computer Engineering, Clemson University, Clemson, SC 29634, USA.

出版信息

Bioengineering (Basel). 2022 Feb 11;9(2):70. doi: 10.3390/bioengineering9020070.

Abstract

In this work, we describe a new method to detect periods of eating by tracking wrist motion during everyday life. Eating uses hand-to-mouth gestures for ingestion, each of which lasts a few seconds. Previous works have detected these gestures individually and then aggregated them to identify meals. The novelty of our approach is that we analyze a much longer window (0.5-15 min) using a convolutional neural network. Longer windows can contain other gestures related to eating, such as cutting or manipulating food, preparing foods for consumption, and resting between ingestion events. The context of these other gestures can improve the detection of periods of eating. We test our methods on the public Clemson all-day dataset, which consists of 354 recordings containing 1063 eating episodes. We found that accuracy at detecting eating increased by 15% in ≥4 min windows compared to ≤15 s windows. Using a 6 min window, we detected 89% of eating episodes, with 1.7 false positives for every true positive (FP/TP). These are the best results achieved to date on this dataset.

摘要

在这项工作中,我们描述了一种通过在日常生活中跟踪手腕运动来检测进食时段的新方法。进食时会使用手到嘴的动作来摄取食物,每个动作持续几秒钟。以往的研究分别检测这些动作,然后将它们汇总以识别用餐情况。我们方法的新颖之处在于,我们使用卷积神经网络分析更长的时间窗口(0.5 - 15分钟)。更长的窗口可能包含与进食相关的其他动作,例如切割或处理食物、准备食物以供食用以及在进食事件之间休息。这些其他动作的上下文可以改善对进食时段的检测。我们在公开的克莱姆森全天数据集上测试了我们的方法,该数据集由354个记录组成,包含1063个进食片段。我们发现,与≤15秒的窗口相比,在≥4分钟的窗口中检测进食的准确率提高了15%。使用6分钟的窗口,我们检测到了89%的进食片段,每一个真阳性有1.7个假阳性(FP/TP)。这些是迄今为止在这个数据集上取得的最佳结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/423e/8869422/6dbfbf81b940/bioengineering-09-00070-g001.jpg

相似文献

1
Top-Down Detection of Eating Episodes by Analyzing Large Windows of Wrist Motion Using a Convolutional Neural Network.
Bioengineering (Basel). 2022 Feb 11;9(2):70. doi: 10.3390/bioengineering9020070.
2
Detecting Eating Episodes From Wrist Motion Using Daily Pattern Analysis.
IEEE J Biomed Health Inform. 2024 Feb;28(2):1054-1065. doi: 10.1109/JBHI.2023.3341077. Epub 2024 Feb 5.
3
Improving the recognition of eating gestures using intergesture sequential dependencies.
IEEE J Biomed Health Inform. 2015 May;19(3):825-31. doi: 10.1109/JBHI.2014.2329137. Epub 2014 Jun 5.
4
Eat-Radar: Continuous Fine-Grained Intake Gesture Detection Using FMCW Radar and 3D Temporal Convolutional Network With Attention.
IEEE J Biomed Health Inform. 2024 Feb;28(2):1000-1011. doi: 10.1109/JBHI.2023.3339703. Epub 2024 Feb 5.
5
Detecting periods of eating during free-living by tracking wrist motion.
IEEE J Biomed Health Inform. 2014 Jul;18(4):1253-60. doi: 10.1109/JBHI.2013.2282471. Epub 2013 Sep 17.
6
An End-to-End Energy-Efficient Approach for Intake Detection With Low Inference Time Using Wrist-Worn Sensor.
IEEE J Biomed Health Inform. 2023 Aug;27(8):3878-3888. doi: 10.1109/JBHI.2023.3276629. Epub 2023 Aug 7.
7
Assessing the Accuracy of a Wrist Motion Tracking Method for Counting Bites Across Demographic and Food Variables.
IEEE J Biomed Health Inform. 2017 May;21(3):599-606. doi: 10.1109/JBHI.2016.2612580. Epub 2016 Sep 21.
8
Drinking Gesture Detection Using Wrist-Worn IMU Sensors with Multi-Stage Temporal Convolutional Network in Free-Living Environments.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1778-1782. doi: 10.1109/EMBC48229.2022.9871817.
9
Exploring Symmetric and Asymmetric Bimanual Eating Detection with Inertial Sensors on the Wrist.
DigitalBiomarkers 17 (2017). 2017 Jul;2017:21-26. doi: 10.1145/3089341.3089345.
10
Modeling Wrist Micromovements to Measure In-Meal Eating Behavior From Inertial Sensor Data.
IEEE J Biomed Health Inform. 2019 Nov;23(6):2325-2334. doi: 10.1109/JBHI.2019.2892011. Epub 2019 Jan 9.

引用本文的文献

1
A Review on Deep Learning for Quality of Life Assessment Through the Use of Wearable Data.
IEEE Open J Eng Med Biol. 2025 Jan 14;6:261-268. doi: 10.1109/OJEMB.2025.3526457. eCollection 2025.
4
Detecting Eating Episodes From Wrist Motion Using Daily Pattern Analysis.
IEEE J Biomed Health Inform. 2024 Feb;28(2):1054-1065. doi: 10.1109/JBHI.2023.3341077. Epub 2024 Feb 5.

本文引用的文献

1
NeckSense: A Multi-Sensor Necklace for Detecting Eating Activities in Free-Living Conditions.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2020 Jun;4(2). doi: 10.1145/3397313.
2
"Automatic Ingestion Monitor Version 2" - A Novel Wearable Device for Automatic Food Intake Detection and Passive Capture of Food Images.
IEEE J Biomed Health Inform. 2021 Feb;25(2):568-576. doi: 10.1109/JBHI.2020.2995473. Epub 2021 Feb 5.
3
A Data Driven End-to-End Approach for In-the-Wild Monitoring of Eating Behavior Using Smartwatches.
IEEE J Biomed Health Inform. 2021 Jan;25(1):22-34. doi: 10.1109/JBHI.2020.2984907. Epub 2021 Jan 5.
4
Automatic, wearable-based, in-field eating detection approaches for public health research: a scoping review.
NPJ Digit Med. 2020 Mar 13;3:38. doi: 10.1038/s41746-020-0246-2. eCollection 2020.
5
Assessing Eating Behaviour Using Upper Limb Mounted Motion Sensors: A Systematic Review.
Nutrients. 2019 May 24;11(5):1168. doi: 10.3390/nu11051168.
6
Modeling Wrist Micromovements to Measure In-Meal Eating Behavior From Inertial Sensor Data.
IEEE J Biomed Health Inform. 2019 Nov;23(6):2325-2334. doi: 10.1109/JBHI.2019.2892011. Epub 2019 Jan 9.
7
A guide to deep learning in healthcare.
Nat Med. 2019 Jan;25(1):24-29. doi: 10.1038/s41591-018-0316-z. Epub 2019 Jan 7.
8
EarBit: Using Wearable Sensors to Detect Eating Episodes in Unconstrained Environments.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2017 Sep;1(3). doi: 10.1145/3130902.
9
A Practical Approach for Recognizing Eating Moments with Wrist-Mounted Inertial Sensing.
Proc ACM Int Conf Ubiquitous Comput. 2015 Sep;2015:1029-1040. doi: 10.1145/2750858.2807545.
10
Assessing the Accuracy of a Wrist Motion Tracking Method for Counting Bites Across Demographic and Food Variables.
IEEE J Biomed Health Inform. 2017 May;21(3):599-606. doi: 10.1109/JBHI.2016.2612580. Epub 2016 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验