Suppr超能文献

一种利用腕部惯性传感识别进食时刻的实用方法。

A Practical Approach for Recognizing Eating Moments with Wrist-Mounted Inertial Sensing.

作者信息

Thomaz Edison, Essa Irfan, Abowd Gregory D

机构信息

School of Interactive Computing, Georgia Institute of Technology, Atlanta, Georgia, USA.

出版信息

Proc ACM Int Conf Ubiquitous Comput. 2015 Sep;2015:1029-1040. doi: 10.1145/2750858.2807545.

Abstract

Recognizing when eating activities take place is one of the key challenges in automated food intake monitoring. Despite progress over the years, most proposed approaches have been largely impractical for everyday usage, requiring multiple on-body sensors or specialized devices such as neck collars for swallow detection. In this paper, we describe the implementation and evaluation of an approach for inferring eating moments based on 3-axis accelerometry collected with a popular off-the-shelf smartwatch. Trained with data collected in a semi-controlled laboratory setting with 20 subjects, our system recognized eating moments in two free-living condition studies (7 participants, 1 day; 1 participant, 31 days), with F-scores of 76.1% (66.7% Precision, 88.8% Recall), and 71.3% (65.2% Precision, 78.6% Recall). This work represents a contribution towards the implementation of a practical, automated system for everyday food intake monitoring, with applicability in areas ranging from health research and food journaling.

摘要

识别进食活动何时发生是自动食物摄入量监测的关键挑战之一。尽管多年来取得了进展,但大多数提出的方法在日常使用中大多不切实际,需要多个身体传感器或诸如用于吞咽检测的颈圈等专用设备。在本文中,我们描述了一种基于使用流行的现成智能手表收集的三轴加速度计来推断进食时刻的方法的实现和评估。我们的系统在有20名受试者参与的半控制实验室环境中收集的数据进行训练后,在两项自由生活条件研究中(7名参与者,1天;1名参与者,31天)识别进食时刻,F值分别为76.1%(精确率66.7%,召回率88.8%)和71.3%(精确率65.2%,召回率78.6%)。这项工作为实现一个实用的、用于日常食物摄入量监测的自动化系统做出了贡献,在从健康研究到饮食记录等领域都有应用。

相似文献

7
Eating Episode Detection with Jawbone-Mounted Inertial Sensing.基于颚骨佩戴式惯性传感的进食事件检测
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4361-4364. doi: 10.1109/EMBC44109.2020.9175949.

引用本文的文献

2
Detecting Eating and Social Presence with All Day Wearable RGB-T.使用全天可穿戴式RGB-T检测饮食和社交存在情况。
IEEE Int Conf Connect Health Appl Syst Eng Technol. 2023 Jun;2023:68-79. doi: 10.1145/3580252.3586974. Epub 2024 Jan 22.
3
Experience: Barriers and Opportunities of Wearables for Eating Research.经验:可穿戴设备在饮食研究中的障碍与机遇
Ext Abstr Hum Factors Computing Syst. 2023 Apr;2023. doi: 10.1145/3544549.3573841. Epub 2023 Apr 19.
8
Detecting Eating Episodes From Wrist Motion Using Daily Pattern Analysis.利用日常模式分析检测腕部运动中的进食行为。
IEEE J Biomed Health Inform. 2024 Feb;28(2):1054-1065. doi: 10.1109/JBHI.2023.3341077. Epub 2024 Feb 5.

本文引用的文献

1
Barriers and Negative Nudges: Exploring Challenges in Food Journaling.障碍与负面助推:探索饮食记录中的挑战
Proc SIGCHI Conf Hum Factor Comput Syst. 2015 Apr;2015:1159-1162. doi: 10.1145/2702123.2702155.
4
Detecting periods of eating during free-living by tracking wrist motion.通过跟踪手腕运动来检测自由生活中的进食时段。
IEEE J Biomed Health Inform. 2014 Jul;18(4):1253-60. doi: 10.1109/JBHI.2013.2282471. Epub 2013 Sep 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验