Suppr超能文献

基于局部阈值处理、分块划分和误差扩散的自适应数字全息图二值化方法

Adaptive Digital Hologram Binarization Method Based on Local Thresholding, Block Division and Error Diffusion.

作者信息

Cheremkhin Pavel A, Kurbatova Ekaterina A, Evtikhiev Nikolay N, Krasnov Vitaly V, Rodin Vladislav G, Starikov Rostislav S

机构信息

Laser Physics Department, Institute for Laser and Plasma Technologies, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia.

出版信息

J Imaging. 2022 Jan 18;8(2):15. doi: 10.3390/jimaging8020015.

Abstract

High-speed optical reconstruction of 3D-scenes can be achieved using digital holography with binary digital micromirror devices (DMD) or a ferroelectric spatial light modulator (fSLM). There are many algorithms for binarizing digital holograms. The most common are methods based on global and local thresholding and error diffusion techniques. In addition, hologram binarization is used in optical encryption, data compression, beam shaping, 3D-displays, nanofabrication, materials characterization, etc. This paper proposes an adaptive binarization method based on a combination of local threshold processing, hologram division into blocks, and error diffusion procedure (the LDE method). The method is applied for binarization of optically recorded and computer-generated digital holograms of flat objects and three-dimensional scenes. The quality of reconstructed images was compared with different methods of error diffusion and thresholding. Image reconstruction quality was up to 22% higher by various metrics than that one for standard binarization methods. The optical hologram reconstruction using DMD confirms the results of the numerical simulations.

摘要

使用带有二进制数字微镜器件(DMD)或铁电空间光调制器(fSLM)的数字全息技术,可以实现三维场景的高速光学重建。有许多用于数字全息图二值化的算法。最常见的是基于全局和局部阈值处理以及误差扩散技术的方法。此外,全息图二值化还应用于光学加密、数据压缩、光束整形、三维显示、纳米制造、材料表征等领域。本文提出了一种基于局部阈值处理、全息图分块以及误差扩散过程相结合的自适应二值化方法(LDE方法)。该方法应用于平面物体和三维场景的光学记录和计算机生成数字全息图的二值化。将重建图像的质量与不同的误差扩散和阈值处理方法进行了比较。通过各种指标衡量,图像重建质量比标准二值化方法高出22%。使用DMD进行光学全息图重建证实了数值模拟的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c443/8874594/9eab8722ff98/jimaging-08-00015-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验