Suppr超能文献

用于图像压缩的语法引导内容自适应变换

Syntax-Guided Content-Adaptive Transform for Image Compression.

作者信息

Shi Yunhui, Ye Liping, Wang Jin, Wang Lilong, Hu Hui, Yin Baocai, Ling Nam

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.

Department of Computer Science and Engineering, Santa Clara University, Santa Clara, CA 95053, USA.

出版信息

Sensors (Basel). 2024 Aug 22;24(16):5439. doi: 10.3390/s24165439.

Abstract

The surge in image data has significantly increased the pressure on storage and transmission, posing new challenges for image compression technology. The structural texture of an image implies its statistical characteristics, which is effective for image encoding and decoding. Consequently, content-adaptive compression methods based on learning can better capture the content attributes of images, thereby enhancing encoding performance. However, learned image compression methods do not comprehensively account for both the global and local correlations among the pixels within an image. Moreover, they are constrained by rate-distortion optimization, which prevents the attainment of a compact representation of image attributes. To address these issues, we propose a syntax-guided content-adaptive transform framework that efficiently captures image attributes and enhances encoding efficiency. Firstly, we propose a syntax-refined side information module that fully leverages syntax and side information to guide the adaptive transformation of image attributes. Moreover, to more thoroughly exploit the global and local correlations in image space, we designed global-local modules, local-global modules, and upsampling/downsampling modules in codecs, further eliminating local and global redundancies. The experimental findings indicate that our proposed syntax-guided content-adaptive image compression model successfully adapts to the diverse complexities of different images, which enhances the efficiency of image compression. Concurrently, the method proposed has demonstrated outstanding performance across three benchmark datasets.

摘要

图像数据的激增显著增加了存储和传输的压力,给图像压缩技术带来了新的挑战。图像的结构纹理蕴含着其统计特征,这对图像编码和解码很有效。因此,基于学习的内容自适应压缩方法能够更好地捕捉图像的内容属性,从而提高编码性能。然而,已有的图像压缩方法没有全面考虑图像内像素之间的全局和局部相关性。此外,它们受到率失真优化的限制,这阻碍了获得图像属性的紧凑表示。为了解决这些问题,我们提出了一种语法引导的内容自适应变换框架,该框架能够有效地捕捉图像属性并提高编码效率。首先,我们提出了一种语法细化的辅助信息模块,该模块充分利用语法和辅助信息来指导图像属性的自适应变换。此外,为了更全面地利用图像空间中的全局和局部相关性,我们在编解码器中设计了全局-局部模块、局部-全局模块和上采样/下采样模块,进一步消除局部和全局冗余。实验结果表明,我们提出的语法引导的内容自适应图像压缩模型成功地适应了不同图像的各种复杂性,提高了图像压缩效率。同时,所提出的方法在三个基准数据集上都表现出了出色的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6361/11359587/86d10bc900a3/sensors-24-05439-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验