Suppr超能文献

基于分割与基于回归的生物标志物估计:以超声图像评估胎儿头围为例

Segmentation-Based vs. Regression-Based Biomarker Estimation: A Case Study of Fetus Head Circumference Assessment from Ultrasound Images.

作者信息

Zhang Jing, Petitjean Caroline, Ainouz Samia

机构信息

Normandie University, INSA Rouen, UNIROUEN, UNIHAVRE, LITIS, 76000 Rouen, France.

出版信息

J Imaging. 2022 Jan 25;8(2):23. doi: 10.3390/jimaging8020023.

Abstract

The fetus head circumference (HC) is a key biometric to monitor fetus growth during pregnancy, which is estimated from ultrasound (US) images. The standard approach to automatically measure the HC is to use a segmentation network to segment the skull, and then estimate the head contour length from the segmentation map via ellipse fitting, usually after post-processing. In this application, segmentation is just an intermediate step to the estimation of a parameter of interest. Another possibility is to estimate directly the HC with a regression network. Even if this type of segmentation-free approaches have been boosted with deep learning, it is not yet clear how well direct approach can compare to segmentation approaches, which are expected to be still more accurate. This observation motivates the present study, where we propose a fair, quantitative comparison of segmentation-based and segmentation-free (i.e., regression) approaches to estimate how far regression-based approaches stand from segmentation approaches. We experiment various convolutional neural networks (CNN) architectures and backbones for both segmentation and regression models and provide estimation results on the HC18 dataset, as well agreement analysis, to support our findings. We also investigate memory usage and computational efficiency to compare both types of approaches. The experimental results demonstrate that even if segmentation-based approaches deliver the most accurate results, regression CNN approaches are actually learning to find prominent features, leading to promising yet improvable HC estimation results.

摘要

胎儿头围(HC)是监测孕期胎儿生长的关键生物特征,可通过超声(US)图像进行估算。自动测量HC的标准方法是使用分割网络对头骨进行分割,然后通常在进行后处理后,通过椭圆拟合从分割图中估计头部轮廓长度。在这个应用中,分割只是估计感兴趣参数的一个中间步骤。另一种可能性是使用回归网络直接估计HC。即使这种无分割方法通过深度学习得到了改进,但直接方法与分割方法相比的效果如何尚不清楚,分割方法预计仍然更准确。这一观察结果激发了本研究,我们提出对基于分割和无分割(即回归)的方法进行公平、定量的比较,以估计基于回归的方法与分割方法的差距。我们对分割和回归模型的各种卷积神经网络(CNN)架构和主干进行了实验,并在HC18数据集上提供了估计结果以及一致性分析,以支持我们的发现。我们还研究了内存使用情况和计算效率,以比较这两种方法。实验结果表明,即使基于分割的方法能提供最准确的结果,但回归CNN方法实际上正在学习找到突出特征,从而得出有前景但仍有待改进的HC估计结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba31/8877769/d0d942fd8267/jimaging-08-00023-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验