Appl Opt. 2022 Feb 10;61(5):B132-B146. doi: 10.1364/AO.439323.
Multi-wavelength digital holographic microscopy (MWDHM) provides indirect measurements of the refractive index for non-dispersive samples. Successive-shot MWDHM is not appropriate for dynamic samples and single-shot MWDHM significantly increases the complexity of the optical setup due to the need for multiple lasers or a wavelength tunable source. Here we consider deep learning convolutional neural networks for computational phase synthesis to obtain high-speed simultaneous phase estimates on different wavelengths and thus single-shot estimates of the integral refractive index without increased experimental complexity. This novel, to the best of our knowledge, computational concept is validated using cell phantoms consisting of internal refractive index variations representing cytoplasm and membrane-bound organelles, respectively, and a simulation of a realistic holographic recording process. Specifically, in this work we employed data-driven computational techniques to perform accurate dual-wavelength hologram synthesis (hologram-to-hologram prediction), dual-wavelength phase synthesis (unwrapped phase-to-phase prediction), direct phase-to-index prediction using a single wavelength, hologram-to-phase prediction, and 2D phase unwrapping with sharp discontinuities (wrapped-to-unwrapped phase prediction).
多波长数字全息显微镜(MWDHM)为非色散样品提供了折射率的间接测量。逐点 MWDHM 不适合动态样品,而单点 MWDHM 由于需要多个激光器或波长可调光源,因此显著增加了光学设置的复杂性。在这里,我们考虑使用深度学习卷积神经网络进行计算相位合成,以在不同波长上获得高速同时相位估计,从而无需增加实验复杂性即可获得积分折射率的单点估计。这个新颖的、据我们所知的计算概念是使用由分别代表细胞质和膜结合细胞器的内部折射率变化的细胞仿体以及对实际全息记录过程的模拟进行验证的。具体来说,在这项工作中,我们采用了数据驱动的计算技术来执行准确的双波长全息图合成(全息图到全息图预测)、双波长相位合成(未展开相位到相位预测)、使用单个波长的直接相位到折射率预测、全息图到相位预测以及具有尖锐不连续性的 2D 相位展开(展开到未展开相位预测)。