Combescot Monique, Shiau Shiue-Yuan
Institut des NanoSciences de Paris, Sorbonne Université, CNRS, 4 place Jussieu, 75005 Paris, France.
Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan.
J Phys Condens Matter. 2022 Apr 4;34(20). doi: 10.1088/1361-648X/ac5867.
The angular momentum formalism provides a powerful way to classify atomic states. Yet, requiring a spherical symmetry from the very first line, this formalism cannot be used for periodic systems, even though cubic semiconductor states are commonly classified according to atomic notations. Although never noted, it is possible to define the analog of the orbital angular momentum, by only using the potential felt by the electrons. The spin-orbit interaction for crystals then takes theL^⋅S^form, withL^reducing toL^=r^×p^for spherical symmetry. This provides the long-missed support for using the eigenvalues ofL^andJ^=L^+S^, as quantum indices to label cubic semiconductor states. Importantly, these quantum indices also control the phase factor that relates valence electron to hole operators, in the same way as particle to antiparticle, in spite of the fact that the hole is definitely not the valence-electron antiparticle. Being associated with a broader definition, the(L^,J^)analogs of the(L^,J^)angular momenta, must be distinguished by names: we suggest 'spatial momentum' forL^that acts in the real space, and 'hybrid momentum' forJ^that also acts on spin, the potential symmetry being specified as 'cubic spatial momentum'. This would castJ^as a 'spherical hybrid momentum', a bit awkward for the concept is novel.
角动量形式体系提供了一种对原子态进行分类的有力方法。然而,由于从一开始就要求具有球对称性,这种形式体系不能用于周期性系统,尽管立方半导体态通常是根据原子符号进行分类的。尽管从未有人指出过,但仅通过利用电子所感受到的势,就有可能定义轨道角动量的类似物。那么晶体的自旋 - 轨道相互作用就采用(\vec{L}\cdot\vec{S})的形式,对于球对称性,(\vec{L})简化为(\vec{L}=\vec{r}\times\vec{p})。这为使用(\vec{L})和(\vec{J}=\vec{L}+\vec{S})的本征值作为标记立方半导体态的量子指标提供了长期缺失的支持。重要的是,这些量子指标还控制着将价电子与空穴算符联系起来的相位因子,就如同粒子与反粒子的关系一样,尽管空穴绝对不是价电子的反粒子。与更广泛的定义相关联,((\vec{L},\vec{J}))角动量的类似物((\vec{\mathcal{L}},\vec{\mathcal{J}}))必须用不同的名称来区分:我们建议将作用于实空间的(\vec{\mathcal{L}})称为“空间动量”,将同时作用于自旋的(\vec{\mathcal{J}})称为“混合动量”,势的对称性指定为“立方空间动量”。这将使(\vec{\mathcal{J}})成为一种“球混合动量”,由于这个概念很新颖,听起来有点别扭。