Rodríguez-Santiago Jonathan, Rodríguez-Medina Nadia, Tamayo-Legorreta Elsa María, Silva-Sánchez Jesús, Téllez-Sosa Juan, Duran-Bedolla Josefina, Aguilar-Vera Alejandro, Lecona-Valera Alba Neri, Garza-Ramos Ulises, Alpuche-Aranda Celia
Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca 62100, Morelos, Mexico.
Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62100, Morelos, Mexico.
Antibiotics (Basel). 2022 Jan 26;11(2):157. doi: 10.3390/antibiotics11020157.
The use of colistin in food-producing animals favors the emergence and spread of colistin-resistant strains. Here, we investigated the occurrence and molecular mechanisms of colistin resistance among isolates from a Mexican piglet farm. A collection of 175 cephalosporin-resistant colonies from swine fecal samples were recovered. The colistin resistance phenotype was identified by rapid polymyxin test and the -type genes were screened by PCR. We assessed the colistin-resistant strains by antimicrobial susceptibility test, pulse-field gel electrophoresis, plasmid profile, and mating experiments. Whole-Genome Sequencing data was used to explore the resistome, virulome, and mobilome of colistin-resistant strains. A total of four colistin-resistant were identified from the cefotaxime-resistant colonies. All harbored the plasmid-borne gene, which was located on conjugative 170-kb IncHI-2 plasmid co-carrying ESBLs genes. Thus, high antimicrobial resistance rates were observed for several antibiotic families. In the RC2-007 strain, the gene was located as part of a prophage carried on non-conjugative 100-kb-plasmid, which upon being transformed into strain increased the polymyxin resistance 2-fold. The genomic analysis showed a broad resistome and virulome. Our findings suggest that colistin resistance followed independent acquisition pathways as clonal and non-genetically related -harboring strains were identified. These isolates represent a reservoir of antibiotic resistance and virulence genes in animals for human consumption which could be potentially propagated into other interfaces.
在食用动物中使用黏菌素有利于耐黏菌素菌株的出现和传播。在此,我们调查了墨西哥一个仔猪养殖场分离株中黏菌素耐药性的发生情况及分子机制。从猪粪便样本中分离出175个对头孢菌素耐药的菌落。通过快速多粘菌素试验鉴定黏菌素耐药表型,并通过PCR筛选mcr型基因。我们通过抗菌药敏试验、脉冲场凝胶电泳、质粒图谱分析和接合实验对耐黏菌素菌株进行了评估。利用全基因组测序数据探索耐黏菌素菌株的耐药基因组、毒力基因组和可移动基因组。从对头孢噻肟耐药的菌落中总共鉴定出4株耐黏菌素菌株。所有菌株都携带质粒介导的mcr基因,该基因位于与ESBLs基因共携带的170 kb接合型IncHI-2质粒上。因此,观察到几个抗生素家族的高耐药率。在RC2-007菌株中,mcr基因位于一个非接合型100 kb质粒携带的前噬菌体中,该质粒转化到大肠杆菌菌株中后,多粘菌素耐药性增加了2倍。基因组分析显示了广泛的耐药基因组和毒力基因组。我们的研究结果表明,黏菌素耐药性遵循独立的获得途径,因为鉴定出了克隆型和非遗传相关的mcr携带菌株。这些分离株代表了供人类食用的动物体内抗生素耐药性和毒力基因的储存库,这些基因可能会传播到其他界面。