一种使用人工智能的新型内镜超声引导下胰腺疾病细针穿刺活检评估方法的开发。

Development of a Novel Evaluation Method for Endoscopic Ultrasound-Guided Fine-Needle Biopsy in Pancreatic Diseases Using Artificial Intelligence.

作者信息

Ishikawa Takuya, Hayakawa Masato, Suzuki Hirotaka, Ohno Eizaburo, Mizutani Yasuyuki, Iida Tadashi, Fujishiro Mitsuhiro, Kawashima Hiroki, Hotta Kazuhiro

机构信息

Department of Gastroenterology and Hepatology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 4668550, Japan.

Department of Electrical and Electronic Engineering, Faculty of Science and Technology, Meijo University, Nagoya 4688502, Japan.

出版信息

Diagnostics (Basel). 2022 Feb 8;12(2):434. doi: 10.3390/diagnostics12020434.

Abstract

We aimed to develop a new artificial intelligence (AI)-based method for evaluating endoscopic ultrasound-guided fine-needle biopsy (EUS-FNB) specimens in pancreatic diseases using deep learning and contrastive learning. We analysed a total of 173 specimens from 96 patients who underwent EUS-FNB with a 22 G Franseen needle for pancreatic diseases. In the initial study, the deep learning method based on stereomicroscopic images of 98 EUS-FNB specimens from 63 patients showed an accuracy of 71.8% for predicting the histological diagnosis, which was lower than that of macroscopic on-site evaluation (MOSE) performed by EUS experts (81.6%). Then, we used image analysis software to mark the core tissues in the photomicrographs of EUS-FNB specimens after haematoxylin and eosin staining and verified whether the diagnostic performance could be improved by applying contrastive learning for the features of the stereomicroscopic images and stained images. The sensitivity, specificity, and accuracy of MOSE were 88.97%, 53.5%, and 83.24%, respectively, while those of the AI-based diagnostic method using contrastive learning were 90.34%, 53.5%, and 84.39%, respectively. The AI-based evaluation method using contrastive learning was comparable to MOSE performed by EUS experts and can be a novel objective evaluation method for EUS-FNB.

摘要

我们旨在开发一种基于人工智能(AI)的新方法,利用深度学习和对比学习来评估胰腺疾病的内镜超声引导下细针穿刺活检(EUS-FNB)标本。我们分析了96例接受22G Franseen针EUS-FNB检查的胰腺疾病患者的173份标本。在初步研究中,基于63例患者的98份EUS-FNB标本立体显微镜图像的深度学习方法预测组织学诊断的准确率为71.8%,低于EUS专家进行的宏观现场评估(MOSE)(81.6%)。然后,我们使用图像分析软件在苏木精和伊红染色后的EUS-FNB标本显微照片上标记核心组织,并验证通过对立体显微镜图像和染色图像的特征应用对比学习是否可以提高诊断性能。MOSE的敏感性、特异性和准确率分别为88.97%、53.5%和83.24%,而使用对比学习的基于AI的诊断方法的敏感性、特异性和准确率分别为90.34%、53.5%和84.39%。使用对比学习的基于AI的评估方法与EUS专家进行的MOSE相当,可以成为一种用于EUS-FNB的新型客观评估方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2323/8871496/52cdc53044db/diagnostics-12-00434-g001.jpg

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索