Suppr超能文献

腔内图像分类的序列模型

Sequential Models for Endoluminal Image Classification.

作者信息

Reuss Joana, Pascual Guillem, Wenzek Hagen, Seguí Santi

机构信息

Department of Mathematics and Computer Science, Universitat de Barcelona, 08007 Barcelona, Spain.

Chair of Remote Sensing Technology, Technical University of Munich, 80333 Munich, Germany.

出版信息

Diagnostics (Basel). 2022 Feb 15;12(2):501. doi: 10.3390/diagnostics12020501.

Abstract

Wireless Capsule Endoscopy (WCE) is a procedure to examine the human digestive system for potential mucosal polyps, tumours, or bleedings using an encapsulated camera. This work focuses on polyp detection within WCE videos through Machine Learning. When using Machine Learning in the medical field, scarce and unbalanced datasets often make it hard to receive a satisfying performance. We claim that using Sequential Models in order to take the temporal nature of the data into account improves the performance of previous approaches. Thus, we present a bidirectional Long Short-Term Memory Network (BLSTM), a sequential network that is particularly designed for temporal data. We find the BLSTM Network outperforms non-sequential architectures and other previous models, receiving a final Area under the Curve of 93.83%. Experiments show that our method of extracting spatial and temporal features yields better performance and could be a possible method to decrease the time needed by physicians to analyse the video material.

摘要

无线胶囊内镜检查(WCE)是一种使用封装摄像头检查人体消化系统是否存在潜在黏膜息肉、肿瘤或出血的程序。这项工作专注于通过机器学习在WCE视频中检测息肉。在医学领域使用机器学习时,稀缺且不平衡的数据集常常使得难以获得令人满意的性能。我们声称,使用顺序模型来考虑数据的时间特性可以提高先前方法的性能。因此,我们提出了一种双向长短期记忆网络(BLSTM),这是一种专门为时间数据设计的顺序网络。我们发现BLSTM网络优于非顺序架构和其他先前的模型,最终曲线下面积达到93.83%。实验表明,我们提取空间和时间特征的方法具有更好的性能,并且可能是减少医生分析视频材料所需时间的一种可行方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df18/8871077/80cdc0266d4c/diagnostics-12-00501-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验