Suppr超能文献

AutoCellANLS:一种基于未染色显微照片的分枝杆菌感染细胞自动分析系统。

AutoCellANLS: An Automated Analysis System for Mycobacteria-Infected Cells Based on Unstained Micrograph.

机构信息

Department of Biomedical Engineering, Sichuan University, Chengdu 610065, China.

Department of Biomedical Engineering, Shenyang University of Technology, Shenyang 110870, China.

出版信息

Biomolecules. 2022 Feb 1;12(2):240. doi: 10.3390/biom12020240.

Abstract

The detection of Mycobacterium tuberculosis (Mtb) infection plays an important role in the control of tuberculosis (TB), one of the leading infectious diseases in the world. Recent advances in artificial intelligence-aided cellular image processing and analytical techniques have shown great promises in automated Mtb detection. However, current cell imaging protocols often involve costly and time-consuming fluorescence staining, which has become a major bottleneck for procedural automation. To solve this problem, we have developed a novel automated system (AutoCellANLS) for cell detection and the recognition of morphological features in the phase-contrast micrographs by using unsupervised machine learning (UML) approaches and deep convolutional neural networks (CNNs). The detection algorithm can adaptively and automatically detect single cells in the cell population by the improved level set segmentation model with the circular Hough transform (CHT). Besides, we have designed a Cell-net by using the transfer learning strategies (TLS) to classify the virulence-specific cellular morphological changes that would otherwise be indistinguishable to the naked eye. The novel system can simultaneously classify and segment microscopic images of the cell populations and achieve an average accuracy of 95.13% for cell detection, 95.94% for morphological classification, 94.87% for sensitivity, and 96.61% for specificity. AutoCellANLS is able to detect significant morphological differences between the infected and uninfected mammalian cells throughout the infection period (2 hpi/12 hpi/24 hpi). Besides, it has overcome the drawback of manual intervention and increased the accuracy by more than 11% compared to our previous work, which used AI-aided imaging analysis to detect mycobacterial infection in macrophages. AutoCellANLS is also efficient and versatile when tailored to different cell lines datasets (RAW264.7 and THP-1 cell). This proof-of concept study provides a novel venue to investigate bacterial pathogenesis at a macroscopic level and offers great promise in the diagnosis of bacterial infections.

摘要

结核分枝杆菌(Mtb)感染的检测在结核病(TB)的控制中起着重要作用,结核病是世界上主要传染病之一。人工智能辅助的细胞图像处理和分析技术的最新进展在自动化 Mtb 检测方面显示出了巨大的前景。然而,目前的细胞成像方案通常涉及昂贵且耗时的荧光染色,这已成为程序自动化的主要瓶颈。为了解决这个问题,我们开发了一种新的自动系统(AutoCellANLS),用于通过使用无监督机器学习(UML)方法和深度卷积神经网络(CNN)对相差显微镜图像中的细胞检测和形态特征识别。检测算法可以通过带有圆形霍夫变换(CHT)的改进水平集分割模型自适应地自动检测细胞群体中的单个细胞。此外,我们设计了一个 Cell-net,使用迁移学习策略(TLS)对毒力特异性细胞形态变化进行分类,否则肉眼无法区分。该新系统可以同时对细胞群体的微观图像进行分类和分割,并实现了 95.13%的细胞检测平均准确率、95.94%的形态分类准确率、94.87%的敏感性和 96.61%的特异性。AutoCellANLS 能够在整个感染期(2 hpi/12 hpi/24 hpi)检测到感染和未感染哺乳动物细胞之间的显著形态差异。此外,它克服了手动干预的缺点,与我们之前使用人工智能辅助成像分析来检测巨噬细胞中分枝杆菌感染的工作相比,准确率提高了 11%以上。AutoCellANLS 还可以针对不同的细胞系数据集(RAW264.7 和 THP-1 细胞)进行高效和多功能定制。这项概念验证研究为在宏观水平上研究细菌发病机制提供了一个新的途径,并为细菌感染的诊断提供了广阔的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b37c/8961542/b5c3c5ff6f70/biomolecules-12-00240-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验