Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green St, Urbana, IL, 61801, USA.
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr., Urbana, IL, 61801, USA.
Sci Rep. 2017 Sep 20;7(1):11943. doi: 10.1038/s41598-017-12165-1.
Digital holographic cytometry (DHC) permits label-free visualization of adherent cells. Dozens of cellular features can be derived from segmentation of hologram-derived images. However, the accuracy of single cell classification by these features remains limited for most applications, and lack of standardization metrics has hindered independent experimental comparison and validation. Here we identify twenty-six DHC-derived features that provide biologically independent information across a variety of mammalian cell state transitions. When trained on these features, machine-learning algorithms achieve blind single cell classification with up to 95% accuracy. Using classification accuracy to guide platform optimization, we develop methods to standardize holograms for the purpose of kinetic single cell cytometry. Applying our approach to human melanoma cells treated with a panel of cancer therapeutics, we track dynamic changes in cellular behavior and cell state over time. We provide the methods and computational tools for optimizing DHC for kinetic single adherent cell classification.
数字全息细胞术(DHC)允许对贴壁细胞进行无标记可视化。可以从全息图衍生图像的分割中得出数十种细胞特征。然而,对于大多数应用,这些特征的单细胞分类准确性仍然有限,并且缺乏标准化指标阻碍了独立的实验比较和验证。在这里,我们确定了 26 种 DHC 衍生特征,这些特征在各种哺乳动物细胞状态转变中提供了生物学上独立的信息。当在这些特征上进行训练时,机器学习算法可以实现高达 95%的盲单细胞分类准确率。使用分类准确率来指导平台优化,我们开发了用于对动力学单细胞细胞术进行标准化的全息图的方法。将我们的方法应用于用人黑色素瘤细胞进行的一组癌症治疗药物处理,我们跟踪了细胞行为和细胞状态随时间的动态变化。我们提供了用于优化动力学单细胞贴壁细胞分类的 DHC 的方法和计算工具。