Suppr超能文献

水合肼诱导制备用于高性能超级电容器的三维互连多孔花状3D-NiCo-SDBS-LDH微球

Hydrazine Hydrate Induced Three-Dimensional Interconnected Porous Flower-like 3D-NiCo-SDBS-LDH Microspheres for High-Performance Supercapacitor.

作者信息

Zhong Liping, Yan Zumiao, Wang Hai, Wang Linjiang

机构信息

College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China.

College of Physics and Technology, Guangxi Normal University, Guilin 541004, China.

出版信息

Materials (Basel). 2022 Feb 14;15(4):1405. doi: 10.3390/ma15041405.

Abstract

Porous structure and surface defects are important to improve the performance of supercapacitors. In this study, a facile pathway was developed for high-performance supercapacitors, which can produce transition metal hydroxides (LDHs) with abundant porous structure and surface defects. The NiCo-SDBS-LDH was prepared by one-step hydrothermal reaction using sodium dodecylbenzene sulfonate (SDBS) as anionic surfactant. And then, three dimensional (3D) interconnected porous flower-like 3D-NiCo-SDBS-LDH microspheres were designed and synthesized using the gas-phase hydrazine hydrate reduction method. Results showed that the hydrazine hydrate reduction not only introduces a large number of pores into 3D-NiCo-SDBS-LDH microspheres and causes the formation of oxygen vacancies, but it also roughens the surface of the microspheres. All these changes contribute to the enhancement of electrochemical activity of 3D-NiCo-SDBS-LDH; the NiCo-SDBS-LDH electrode after hydrazine hydrate treatment (3D-NiCo-SDBS-LDH) exhibits a higher specific capacitance of 1148 F·g at 1 A·g (about 1.46 times larger than that of NiCo-SDBS-LDH) and excellent long cycle life with 94% retention after 4000 cycles. Moreover, the assembled 3D-NiCo-SDBS-LDH//AC (active carbon) asymmetric supercapacitor (ASC) achieves remarkable energy density of 73.14 W h·kg at 800 W·kg and long-term cycling stability of 95.5% retention for up to 10,000 cycles. The outstanding electrochemical performance can be attributed to the synergy between the rich porous structure and the roughened surface that has been created by the hydrazine hydrate treatment.

摘要

多孔结构和表面缺陷对于提高超级电容器的性能至关重要。在本研究中,开发了一种用于高性能超级电容器的简便方法,该方法可制备具有丰富多孔结构和表面缺陷的过渡金属氢氧化物(层状双氢氧化物,LDHs)。以十二烷基苯磺酸钠(SDBS)为阴离子表面活性剂,通过一步水热反应制备了NiCo-SDBS-LDH。然后,采用气相水合肼还原法设计并合成了三维(3D)互连多孔花状3D-NiCo-SDBS-LDH微球。结果表明,水合肼还原不仅在3D-NiCo-SDBS-LDH微球中引入了大量孔隙并导致氧空位的形成,还使微球表面变得粗糙。所有这些变化都有助于增强3D-NiCo-SDBS-LDH的电化学活性;水合肼处理后的NiCo-SDBS-LDH电极(3D-NiCo-SDBS-LDH)在1 A·g-1时表现出1148 F·g-1的更高比电容(约为NiCo-SDBS-LDH的1.46倍)以及出色的长循环寿命,在4000次循环后电容保持率为94%。此外,组装的3D-NiCo-SDBS-LDH//AC(活性炭)不对称超级电容器(ASC)在800 W·kg-1时实现了73.14 W h·kg-1的显著能量密度以及高达10000次循环的95.5%的长期循环稳定性。优异的电化学性能可归因于富多孔结构与水合肼处理所产生的粗糙表面之间的协同作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c1/8875902/4abbd34e2df5/materials-15-01405-sch001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验