文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

铁和碳化铁纳米颗粒氧化机制的环境STEM研究

Environmental STEM Study of the Oxidation Mechanism for Iron and Iron Carbide Nanoparticles.

作者信息

LaGrow Alec P, Famiani Simone, Sergides Andreas, Lari Leonardo, Lloyd David C, Takahashi Mari, Maenosono Shinya, Boyes Edward D, Gai Pratibha L, Thanh Nguyen Thi Kim

机构信息

International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.

Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK.

出版信息

Materials (Basel). 2022 Feb 18;15(4):1557. doi: 10.3390/ma15041557.


DOI:10.3390/ma15041557
PMID:35208096
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8877599/
Abstract

The oxidation of solution-synthesized iron (Fe) and iron carbide (FeC) nanoparticles was studied in an environmental scanning transmission electron microscope (ESTEM) at elevated temperatures under oxygen gas. The nanoparticles studied had a native oxide shell present, that formed after synthesis, an ~3 nm iron oxide (FeO) shell for the Fe nanoparticles and ~2 nm for the FeC nanoparticles, with small void areas seen in several places between the core and shell for the Fe and an ~0.8 nm space between the core and shell for the FeC. The iron nanoparticles oxidized asymmetrically, with voids on the borders between the Fe core and FeO shell increasing in size until the void coalesced, and finally the Fe core disappeared. In comparison, the oxidation of the FeC progressed symmetrically, with the core shrinking in the center and the outer oxide shell growing until the iron carbide had fully disappeared. Small bridges of iron oxide formed during oxidation, indicating that the Fe transitioned to the oxide shell surface across the channels, while leaving the carbon behind in the hollow core. The carbon in the carbide is hypothesized to suppress the formation of larger crystallites of iron oxide during oxidation, and alter the diffusion rates of the Fe and O during the reaction, which explains the lower sensitivity to oxidation of the FeC nanoparticles.

摘要

在环境扫描透射电子显微镜(ESTEM)中,于高温且有氧气的条件下,研究了溶液合成的铁(Fe)纳米颗粒和碳化铁(FeC)纳米颗粒的氧化过程。所研究的纳米颗粒存在原生氧化壳,该氧化壳在合成后形成,Fe纳米颗粒的氧化壳为约3纳米的氧化铁(FeO)壳,FeC纳米颗粒的氧化壳为约2纳米,Fe纳米颗粒的核与壳之间在几个位置可见小的空隙区域,FeC纳米颗粒的核与壳之间有一个约0.8纳米的间隙。铁纳米颗粒的氧化是不对称的,Fe核与FeO壳之间边界处的空隙尺寸不断增大,直至空隙合并,最终Fe核消失。相比之下,FeC的氧化是对称进行的,核在中心收缩,外部氧化壳生长,直至碳化铁完全消失。氧化过程中形成了氧化铁的小桥,这表明Fe通过通道转移到氧化壳表面,而碳则留在中空的核中。据推测,碳化物中的碳会抑制氧化过程中氧化铁较大晶粒的形成,并改变反应过程中Fe和O的扩散速率,这解释了FeC纳米颗粒对氧化的较低敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/16e13b07b596/materials-15-01557-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/6120828d0de7/materials-15-01557-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/2643c65dcd92/materials-15-01557-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/a75e5d72faab/materials-15-01557-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/62114a44c6a2/materials-15-01557-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/27637fd6edbd/materials-15-01557-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/bb456b3ba52a/materials-15-01557-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/b0d9ebdb1162/materials-15-01557-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/fde9b5f43b63/materials-15-01557-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/16e13b07b596/materials-15-01557-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/6120828d0de7/materials-15-01557-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/2643c65dcd92/materials-15-01557-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/a75e5d72faab/materials-15-01557-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/62114a44c6a2/materials-15-01557-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/27637fd6edbd/materials-15-01557-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/bb456b3ba52a/materials-15-01557-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/b0d9ebdb1162/materials-15-01557-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/fde9b5f43b63/materials-15-01557-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eaf/8877599/16e13b07b596/materials-15-01557-g009.jpg

相似文献

[1]
Environmental STEM Study of the Oxidation Mechanism for Iron and Iron Carbide Nanoparticles.

Materials (Basel). 2022-2-18

[2]
Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.

J Am Chem Soc. 2009-7-1

[3]
How "hollow" are hollow nanoparticles?

J Am Chem Soc. 2013-2-11

[4]
Size-dependent nanoscale kirkendall effect during the oxidation of nickel nanoparticles.

ACS Nano. 2010-4-27

[5]
Long-term investigation on the phase stability, magnetic behavior, toxicity, and MRI characteristics of superparamagnetic Fe/Fe-oxide core/shell nanoparticles.

Int J Pharm. 2012-10-8

[6]
The Role of Frozen Spins in the Exchange Anisotropy of Core-Shell Fe@Fe(3)O(4) Nanoparticles.

J Phys Chem C Nanomater Interfaces. 2011-1-24

[7]
Low intensity sonosynthesis of iron carbide@iron oxide core-shell nanoparticles.

Ultrason Sonochem. 2018-8-17

[8]
Chemically synthesized hollow nanostructures in iron oxides.

Nanotechnology. 2011-5-17

[9]
High temperature oxidation of iron-iron oxide core-shell nanowires composed of iron nanoparticles.

Phys Chem Chem Phys. 2016-2-7

[10]
Characterization of the iron oxide phases formed during the synthesis of core-shell FeO@C nanoparticles modified with Ag.

Nanotechnology. 2020-9-25

引用本文的文献

[1]
One-Step Low-Temperature Synthesis of Metastable ε-Iron Carbide Nanoparticles with Unique Catalytic Properties Beyond Conventional Iron Catalysts.

Small. 2025-7

[2]
Shielding the Hägg carbide by a graphene layer for ultrahigh carbon efficiency during syngas conversion.

Proc Natl Acad Sci U S A. 2024-12-10

[3]
Facet sensitivity of iron carbides in Fischer-Tropsch synthesis.

Nat Commun. 2024-7-19

本文引用的文献

[1]
Rapid Millifluidic Synthesis of Stable High Magnetic Moment FeC Nanoparticles for Hyperthermia.

ACS Appl Mater Interfaces. 2020-6-11

[2]
Iron carbide nanoparticles: an innovative nanoplatform for biomedical applications.

Nanoscale Horiz. 2017-3-1

[3]
Zero valent iron core-iron oxide shell nanoparticles as small magnetic particle imaging tracers.

Chem Commun (Camb). 2020-2-26

[4]
Single Atom Dynamics in Chemical Reactions.

Acc Chem Res. 2020-2-5

[5]
Electrocatalytic water oxidation over AlFeB.

Chem Sci. 2019-1-23

[6]
Bimetallic Nanoparticle Oxidation in Three Dimensions by Chemically Sensitive Electron Tomography and in Situ Transmission Electron Microscopy.

ACS Nano. 2018-8-28

[7]
In situ oxidation and reduction of triangular nickel nanoplates via environmental transmission electron microscopy.

J Microsc. 2018-2

[8]
Quantitative 3D evolution of colloidal nanoparticle oxidation in solution.

Science. 2017-4-21

[9]
Visualizing the Cu/Cu2(O) Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy.

J Am Chem Soc. 2016-12-27

[10]
Magnetically Induced Continuous CO Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power.

Angew Chem Int Ed Engl. 2016-11-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索