LaGrow Alec P, Famiani Simone, Sergides Andreas, Lari Leonardo, Lloyd David C, Takahashi Mari, Maenosono Shinya, Boyes Edward D, Gai Pratibha L, Thanh Nguyen Thi Kim
International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal.
Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK.
Materials (Basel). 2022 Feb 18;15(4):1557. doi: 10.3390/ma15041557.
The oxidation of solution-synthesized iron (Fe) and iron carbide (FeC) nanoparticles was studied in an environmental scanning transmission electron microscope (ESTEM) at elevated temperatures under oxygen gas. The nanoparticles studied had a native oxide shell present, that formed after synthesis, an ~3 nm iron oxide (FeO) shell for the Fe nanoparticles and ~2 nm for the FeC nanoparticles, with small void areas seen in several places between the core and shell for the Fe and an ~0.8 nm space between the core and shell for the FeC. The iron nanoparticles oxidized asymmetrically, with voids on the borders between the Fe core and FeO shell increasing in size until the void coalesced, and finally the Fe core disappeared. In comparison, the oxidation of the FeC progressed symmetrically, with the core shrinking in the center and the outer oxide shell growing until the iron carbide had fully disappeared. Small bridges of iron oxide formed during oxidation, indicating that the Fe transitioned to the oxide shell surface across the channels, while leaving the carbon behind in the hollow core. The carbon in the carbide is hypothesized to suppress the formation of larger crystallites of iron oxide during oxidation, and alter the diffusion rates of the Fe and O during the reaction, which explains the lower sensitivity to oxidation of the FeC nanoparticles.
在环境扫描透射电子显微镜(ESTEM)中,于高温且有氧气的条件下,研究了溶液合成的铁(Fe)纳米颗粒和碳化铁(FeC)纳米颗粒的氧化过程。所研究的纳米颗粒存在原生氧化壳,该氧化壳在合成后形成,Fe纳米颗粒的氧化壳为约3纳米的氧化铁(FeO)壳,FeC纳米颗粒的氧化壳为约2纳米,Fe纳米颗粒的核与壳之间在几个位置可见小的空隙区域,FeC纳米颗粒的核与壳之间有一个约0.8纳米的间隙。铁纳米颗粒的氧化是不对称的,Fe核与FeO壳之间边界处的空隙尺寸不断增大,直至空隙合并,最终Fe核消失。相比之下,FeC的氧化是对称进行的,核在中心收缩,外部氧化壳生长,直至碳化铁完全消失。氧化过程中形成了氧化铁的小桥,这表明Fe通过通道转移到氧化壳表面,而碳则留在中空的核中。据推测,碳化物中的碳会抑制氧化过程中氧化铁较大晶粒的形成,并改变反应过程中Fe和O的扩散速率,这解释了FeC纳米颗粒对氧化的较低敏感性。
Materials (Basel). 2022-2-18
J Am Chem Soc. 2009-7-1
J Am Chem Soc. 2013-2-11
J Phys Chem C Nanomater Interfaces. 2011-1-24
Ultrason Sonochem. 2018-8-17
Nanotechnology. 2011-5-17
Phys Chem Chem Phys. 2016-2-7
Proc Natl Acad Sci U S A. 2024-12-10
Nat Commun. 2024-7-19
ACS Appl Mater Interfaces. 2020-6-11
Nanoscale Horiz. 2017-3-1
Chem Commun (Camb). 2020-2-26
Acc Chem Res. 2020-2-5
Chem Sci. 2019-1-23
Angew Chem Int Ed Engl. 2016-11-22