Huang Junqi, Wu Rundong, Chen Linyi, Yang Ziqiang, Yan Daoguang, Li Mingchuan
Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China.
Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.
Front Pharmacol. 2022 Feb 8;13:811406. doi: 10.3389/fphar.2022.811406. eCollection 2022.
Anthracyclines, such as doxorubicin, represent one group of chemotherapy drugs with the most cardiotoxicity. Despite that anthracyclines are capable of treating assorted solid tumors and hematological malignancies, the side effect of inducing cardiac dysfunction has hampered their clinical use. Currently, the mechanism underlying anthracycline cardiotoxicity remains obscure. Increasing evidence points to mitochondria, the energy factory of cardiomyocytes, as a major target of anthracyclines. In this review, we will summarize recent findings about mitochondrial mechanism during anthracycline cardiotoxicity. In particular, we will focus on the following aspects: 1) the traditional view about anthracycline-induced reactive oxygen species (ROS), which is produced by mitochondria, but in turn causes mitochondrial injury. 2) Mitochondrial iron-overload and ferroptosis during anthracycline cardiotoxicity. 3) Autophagy, mitophagy and mitochondrial dynamics during anthracycline cardiotoxicity. 4) Anthracycline-induced disruption of cardiac metabolism.
蒽环类药物,如阿霉素,是一类具有最强心脏毒性的化疗药物。尽管蒽环类药物能够治疗各种实体瘤和血液系统恶性肿瘤,但其诱发心脏功能障碍的副作用阻碍了它们的临床应用。目前,蒽环类药物心脏毒性的潜在机制仍不清楚。越来越多的证据表明,作为心肌细胞能量工厂的线粒体是蒽环类药物的主要靶点。在这篇综述中,我们将总结蒽环类药物心脏毒性中线粒体机制的最新研究结果。特别地,我们将关注以下几个方面:1)关于蒽环类药物诱导活性氧(ROS)产生的传统观点,ROS由线粒体产生,但反过来又会导致线粒体损伤。2)蒽环类药物心脏毒性过程中的线粒体铁过载和铁死亡。3)蒽环类药物心脏毒性过程中的自噬、线粒体自噬和线粒体动力学。4)蒽环类药物诱导的心脏代谢紊乱。