Kitano Sho, Noguchi Tomohiro G, Nishihara Masamichi, Kamitani Kazutaka, Sugiyama Takeharu, Yoshioka Satoru, Miwa Tetsuya, Yoshizawa Kazunari, Staykov Aleksandar, Yamauchi Miho
Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.
International Institute for Carbon-Neutral Energy Research (WPI-I 2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan.
Adv Mater. 2022 Apr;34(16):e2110552. doi: 10.1002/adma.202110552. Epub 2022 Mar 11.
The oxygen evolution reaction (OER) is a critical element for all sorts of reactions that use water as a hydrogen source, such as hydrogen evolution and electrochemical CO reduction, and novel design principles that provide highly active sites on OER electrocatalysts push the limits of their practical applications. Herein, Au-cluster loading on unilamellar exfoliated layered double hydroxide (ULDH) electrocatalysts for the OER is demonstrated to fabricate a heterointerface between Au clusters and ULDHs as an active site, which is accompanied by the oxidation state modulation of the active site and interfacial direct OO coupling ("interfacial DOOC"). The Au-cluster-loaded ULDHs exhibit excellent activities for the OER with an overpotential of 189 mV at 10 mA cm . X-ray absorption fine structure measurements reveal that charge transfer from the Au clusters to ULDHs modifies the oxidation states of trivalent metal ions, which can be active sites on the ULDHs. The present study, supported by highly sensitive spectroscopy combining reflection absorption infrared spectroscopy and modulation-excitation spectroscopy and density functional theory calculations, indicates that active sites at the interface between the Au clusters and ULDHs promote a novel OER mechanism through interfacial DOOC, thereby achieving outstanding catalytic performance.
析氧反应(OER)是所有以水作为氢源的反应(如析氢反应和电化学CO还原反应)中的关键要素,而能在OER电催化剂上提供高活性位点的新颖设计原则推动了其实际应用的极限。在此,本文展示了将金团簇负载于用于OER的单层剥离层状双氢氧化物(ULDH)电催化剂上,以在金团簇与ULDH之间构建一个作为活性位点的异质界面,这伴随着活性位点的氧化态调制以及界面直接O—O偶联(“界面DOOC”)。负载金团簇的ULDH对OER表现出优异的活性,在10 mA cm 时过电位为189 mV。X射线吸收精细结构测量表明,从金团簇到ULDH的电荷转移改变了三价金属离子的氧化态,而这些离子可能是ULDH上的活性位点。本研究得到了反射吸收红外光谱和调制激发光谱相结合的高灵敏度光谱以及密度泛函理论计算的支持,表明金团簇与ULDH之间界面处的活性位点通过界面DOOC促进了一种新颖的OER机制,从而实现了出色的催化性能。