Suppr超能文献

利用声音片段的小波尺度图表示和卷积神经网络对肺音进行分类。

Classification of lung sounds using scalogram representation of sound segments and convolutional neural network.

作者信息

Pham Thi Viet Huong, Nguyen Thi Ngoc Huyen, Tran Anh Vu, Hoang Quang Huy

机构信息

International School, Vietnam National University, Hanoi, Vietnam.

School of Electronics and Telecommunications, Hanoi University of Science and Technology, Hanoi, Vietnam.

出版信息

J Med Eng Technol. 2022 May;46(4):270-279. doi: 10.1080/03091902.2022.2040624. Epub 2022 Feb 25.

Abstract

Lung auscultation is one of the most common methods for screening of lung diseases. The increasingly high rate of respiratory diseases leads to the need for robust methods to detect the abnormalities in patients' breathing sounds. Lung sounds analysis stands out as a promising approach to automatic screening of lung diseases, serving as a second opinion for doctors as a stand-alone device for preliminary screening of lung diseases in remote areas. In previous research on lung classification using ICBHI Database on Kaggle, lung audios are converted to spectral images and fed into deep neural networks for training. There are a few studies which uses the scalogram, however they focussed on classification among different lung diseases. The use of scalograms in categorising the sound types are rarely used. In this paper, we combined scalograms and neural networks for classification of lung sound types. Padding methods and augmentation are also considered to evaluate the impacts on classification score. An ensemble learning is incorporated to increase classification accuracy by utilising voting of many models. The model trained and evaluated has shown prominent improvement of this method on classification on the benchmark ICBHI database.

摘要

肺部听诊是筛查肺部疾病最常用的方法之一。呼吸系统疾病发病率的不断上升,使得需要有可靠的方法来检测患者呼吸音中的异常情况。肺音分析作为一种有前景的自动筛查肺部疾病的方法脱颖而出,可作为医生的第二诊断意见,也可作为偏远地区肺部疾病初步筛查的独立设备。在之前利用Kaggle上的ICBHI数据库进行肺部分类的研究中,肺部音频被转换为频谱图像并输入深度神经网络进行训练。有一些研究使用了小波尺度图,然而这些研究主要集中在不同肺部疾病之间的分类。在对声音类型进行分类时使用小波尺度图的情况很少见。在本文中,我们将小波尺度图和神经网络相结合用于肺音类型的分类。还考虑了填充方法和数据增强来评估它们对分类分数的影响。通过采用多个模型的投票机制,引入了集成学习来提高分类准确率。在基准ICBHI数据库上进行分类时,训练和评估的模型显示出该方法有显著改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验