Suppr超能文献

自动解释机器学习对严重慢性阻塞性肺疾病急性加重的预测:回顾性队列研究。

Automatically Explaining Machine Learning Predictions on Severe Chronic Obstructive Pulmonary Disease Exacerbations: Retrospective Cohort Study.

作者信息

Zeng Siyang, Arjomandi Mehrdad, Luo Gang

机构信息

Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, United States.

Medical Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States.

出版信息

JMIR Med Inform. 2022 Feb 25;10(2):e33043. doi: 10.2196/33043.

Abstract

BACKGROUND

Chronic obstructive pulmonary disease (COPD) is a major cause of death and places a heavy burden on health care. To optimize the allocation of precious preventive care management resources and improve the outcomes for high-risk patients with COPD, we recently built the most accurate model to date to predict severe COPD exacerbations, which need inpatient stays or emergency department visits, in the following 12 months. Our model is a machine learning model. As is the case with most machine learning models, our model does not explain its predictions, forming a barrier for clinical use. Previously, we designed a method to automatically provide rule-type explanations for machine learning predictions and suggest tailored interventions with no loss of model performance. This method has been tested before for asthma outcome prediction but not for COPD outcome prediction.

OBJECTIVE

This study aims to assess the generalizability of our automatic explanation method for predicting severe COPD exacerbations.

METHODS

The patient cohort included all patients with COPD who visited the University of Washington Medicine facilities between 2011 and 2019. In a secondary analysis of 43,576 data instances, we used our formerly developed automatic explanation method to automatically explain our model's predictions and suggest tailored interventions.

RESULTS

Our method explained the predictions for 97.1% (100/103) of the patients with COPD whom our model correctly predicted to have severe COPD exacerbations in the following 12 months and the predictions for 73.6% (134/182) of the patients with COPD who had ≥1 severe COPD exacerbation in the following 12 months.

CONCLUSIONS

Our automatic explanation method worked well for predicting severe COPD exacerbations. After further improving our method, we hope to use it to facilitate future clinical use of our model.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/13783.

摘要

背景

慢性阻塞性肺疾病(COPD)是主要的死亡原因,给医疗保健带来沉重负担。为了优化宝贵的预防保健管理资源分配并改善COPD高危患者的治疗效果,我们最近构建了迄今为止最准确的模型,以预测在接下来的12个月内需要住院或急诊就诊的严重COPD急性加重情况。我们的模型是一个机器学习模型。与大多数机器学习模型一样,我们的模型无法解释其预测结果,这成为临床应用的障碍。此前,我们设计了一种方法来自动为机器学习预测提供规则类型的解释,并在不损失模型性能的情况下建议量身定制的干预措施。该方法之前已针对哮喘结局预测进行过测试,但未用于COPD结局预测。

目的

本研究旨在评估我们用于预测严重COPD急性加重的自动解释方法的通用性。

方法

患者队列包括2011年至2019年间在华盛顿大学医学设施就诊的所有COPD患者。在对43576个数据实例的二次分析中,我们使用之前开发的自动解释方法来自动解释我们模型的预测结果,并建议量身定制的干预措施。

结果

我们的方法解释了我们的模型正确预测在接下来的12个月内会发生严重COPD急性加重的97.1%(100/103)的COPD患者的预测结果,以及在接下来的12个月内有≥1次严重COPD急性加重的73.6%(134/182)的COPD患者的预测结果。

结论

我们的自动解释方法在预测严重COPD急性加重方面效果良好。在进一步改进我们的方法后,我们希望将其用于促进我们模型未来的临床应用。

国际注册报告识别码(IRRID):RR2-10.2196/13783

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bfa/8917430/dad6da0f15e2/medinform_v10i2e33043_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验