School of Computer Science, University of Auckland, Thomas Building, Room 407 3 Symonds St Auckland 1010 New Zealand.
Syst Biol. 2022 Oct 12;71(6):1549-1560. doi: 10.1093/sysbio/syac015.
We present a two-headed approach called Bayesian Integrated Coalescent Epoch PlotS (BICEPS) for efficient inference of coalescent epoch models. Firstly, we integrate out population size parameters, and secondly, we introduce a set of more powerful Markov chain Monte Carlo (MCMC) proposals for flexing and stretching trees. Even though population sizes are integrated out and not explicitly sampled through MCMC, we are still able to generate samples from the population size posteriors. This allows demographic reconstruction through time and estimating the timing and magnitude of population bottlenecks and full population histories. Altogether, BICEPS can be considered a more muscular version of the popular Bayesian skyline model. We demonstrate its power and correctness by a well-calibrated simulation study. Furthermore, we demonstrate with an application to SARS-CoV-2 genomic data that some analyses that have trouble converging with the traditional Bayesian skyline prior and standard MCMC proposals can do well with the BICEPS approach. BICEPS is available as open-source package for BEAST 2 under GPL license and has a user-friendly graphical user interface.[Bayesian phylogenetics; BEAST 2; BICEPS; coalescent model.].
我们提出了一种称为贝叶斯综合融合时代绘图(BICEPS)的双头方法,用于有效地推断融合时代模型。首先,我们整合了种群大小参数,其次,我们引入了一组更强大的马尔可夫链蒙特卡罗(MCMC)提案,用于弯曲和拉伸树。尽管通过 MCMC 整合并明确抽样了种群大小,但我们仍然能够从种群大小后验中生成样本。这允许通过时间进行人口重建,并估计人口瓶颈和完整人口历史的时间和规模。总的来说,BICEPS 可以被认为是流行的贝叶斯天际线模型的更强大版本。我们通过精心校准的模拟研究证明了它的强大功能和正确性。此外,我们通过对 SARS-CoV-2 基因组数据的应用表明,一些与传统贝叶斯天际线先验和标准 MCMC 提案难以收敛的分析可以很好地采用 BICEPS 方法。BICEPS 作为 BEAST 2 的开源软件包在 GPL 许可证下提供,并具有用户友好的图形用户界面。[贝叶斯系统发育学;BEAST 2;BICEPS;融合模型。]