IEEE Trans Vis Comput Graph. 2023 Jul;29(7):3209-3225. doi: 10.1109/TVCG.2022.3153895. Epub 2023 May 26.
We study hypergraph visualization via its topological simplification. We explore both vertex simplification and hyperedge simplification of hypergraphs using tools from topological data analysis. In particular, we transform a hypergraph into its graph representations, known as the line graph and clique expansion. A topological simplification of such a graph representation induces a simplification of the hypergraph. In simplifying a hypergraph, we allow vertices to be combined if they belong to almost the same set of hyperedges, and hyperedges to be merged if they share almost the same set of vertices. Our proposed approaches are general and mathematically justifiable, and put vertex simplification and hyperedge simplification in a unifying framework.
我们通过拓扑简化来研究超图可视化。我们使用拓扑数据分析工具来探索超图的顶点简化和超边简化。具体来说,我们将超图转换为其图表示形式,即线图和团扩张。这种图表示形式的拓扑简化会导致超图的简化。在简化超图时,如果顶点属于几乎相同的超边集,则可以将它们合并,如果超边共享几乎相同的顶点集,则可以将它们合并。我们提出的方法具有通用性和数学合理性,并将顶点简化和超边简化置于统一的框架中。