Suppr超能文献

快速微扰复杂性指数在意识障碍诊断及预后评估中的应用

Application of Fast Perturbational Complexity Index to the Diagnosis and Prognosis for Disorders of Consciousness.

作者信息

Wang Yong, Niu Zikang, Xia Xiaoyu, Bai Yang, Liang Zhenhu, He Jianghong, Li Xiaoli

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2022;30:509-518. doi: 10.1109/TNSRE.2022.3154772. Epub 2022 Mar 11.

Abstract

OBJECTIVE

Diagnosis and prognosis of patients with disorders of consciousness (DOC) is a challenge for neuroscience and clinical practice. Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) is an effective tool to measure the level of consciousness. However, a scientific and accurate method to quantify TMS-evoked activity is still lacking. This study applied fast perturbational complexity index (PCIst) to the diagnosis and prognosis of DOC patients.

METHODS

TMS-EEG data of 30 normal healthy participants (NOR) and 181 DOC patients were collected. The PCIst was used to assess the time-space complexity of TMS-evoked potentials (TEP). We selected parameters of PCIst in terms of data length, data delay, sampling rate and frequency band. In addition, we collected Coma Recovery Scale-Revised (CRS-R) values for 114 DOC patients after one year. Finally, we trained the classification and regression model.

RESULTS

  1. PCIst shows the differences among NOR, minimally consciousness state (MCS) and unresponsive wakefulness syndrome (UWS) and has low computational cost. 2) Optimal parameters of data length and delay after TMS are 300 ms and 101-300 ms. Significant differences of PCIst at 5-8 Hz and 9-12 Hz bands are found among NOR, MCS and UWS groups. PCIst still works when TEP is down-sampled to 250 Hz. 3) PCIst at 9-12 Hz shows the highest performance in diagnosis and prognosis of DOC.

CONCLUSIONS

This study confirms that PCIst can quantify the level of consciousness. PCIst is a potential measure for the diagnosis and prognosis of DOC patients.

摘要

目的

意识障碍(DOC)患者的诊断和预后是神经科学和临床实践面临的一项挑战。经颅磁刺激联合脑电图(TMS-EEG)是测量意识水平的有效工具。然而,目前仍缺乏一种科学、准确的方法来量化TMS诱发的活动。本研究将快速扰动复杂性指数(PCIst)应用于DOC患者的诊断和预后评估。

方法

收集了30名正常健康参与者(NOR)和181名DOC患者的TMS-EEG数据。使用PCIst评估TMS诱发电位(TEP)的时空复杂性。我们根据数据长度、数据延迟、采样率和频段选择了PCIst的参数。此外,我们收集了114名DOC患者一年后的昏迷恢复量表修订版(CRS-R)值。最后,我们训练了分类和回归模型。

结果

1)PCIst显示了NOR、最低意识状态(MCS)和无反应觉醒综合征(UWS)之间的差异,且计算成本较低。2)TMS后数据长度和延迟的最佳参数分别为300 ms和101-300 ms。在NOR、MCS和UWS组之间,5-8 Hz和9-12 Hz频段的PCIst存在显著差异。当TEP下采样到250 Hz时,PCIst仍然有效。3)9-12 Hz的PCIst在DOC的诊断和预后评估中表现最佳。

结论

本研究证实PCIst可以量化意识水平。PCIst是DOC患者诊断和预后评估的一种潜在指标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验