Department of Neuroradiology (G.B., U.N., M.A.M., M.F., Ch.H., S.H., C.U., M.B., M.A.M., J.A.R.P., P.V.), Heidelberg University Hospital, Germany.
Neurology Clinic (S.N., S.S., P.A.R.), Heidelberg University Hospital, Germany.
Stroke. 2020 Dec;51(12):3541-3551. doi: 10.1161/STROKEAHA.120.030287. Epub 2020 Oct 12.
This study assessed the predictive performance and relative importance of clinical, multimodal imaging, and angiographic characteristics for predicting the clinical outcome of endovascular treatment for acute ischemic stroke.
A consecutive series of 246 patients with acute ischemic stroke and large vessel occlusion in the anterior circulation who underwent endovascular treatment between April 2014 and January 2018 was analyzed. Clinical, conventional imaging (electronic Alberta Stroke Program Early CT Score, acute ischemic volume, site of vessel occlusion, and collateral score), and advanced imaging characteristics (CT-perfusion with quantification of ischemic penumbra and infarct core volumes) before treatment as well as angiographic (interval groin puncture-recanalization, modified Thrombolysis in Cerebral Infarction score) and postinterventional clinical (National Institutes of Health Stroke Scale score after 24 hours) and imaging characteristics (electronic Alberta Stroke Program Early CT Score, final infarction volume after 18-36 hours) were assessed. The modified Rankin Scale (mRS) score at 90 days (mRS-90) was used to measure patient outcome (favorable outcome: mRS-90 ≤2 versus unfavorable outcome: mRS-90 >2). Machine-learning with gradient boosting classifiers was used to assess the performance and relative importance of the extracted characteristics for predicting mRS-90.
Baseline clinical and conventional imaging characteristics predicted mRS-90 with an area under the receiver operating characteristics curve of 0.740 (95% CI, 0.733-0.747) and an accuracy of 0.711 (95% CI, 0.705-0.717). Advanced imaging with CT-perfusion did not improved the predictive performance (area under the receiver operating characteristics curve, 0.747 [95% CI, 0.740-0.755]; accuracy, 0.720 [95% CI, 0.714-0.727]; =0.150). Further inclusion of angiographic and postinterventional characteristics significantly improved the predictive performance (area under the receiver operating characteristics curve, 0.856 [95% CI, 0.850-0.861]; accuracy, 0.804 [95% CI, 0.799-0.810]; <0.001). The most important parameters for predicting mRS 90 were National Institutes of Health Stroke Scale score after 24 hours (importance =100%), premorbid mRS score (importance =44%) and final infarction volume on postinterventional CT after 18 to 36 hours (importance =32%).
Integrative assessment of clinical, multimodal imaging, and angiographic characteristics with machine-learning allowed to accurately predict the clinical outcome following endovascular treatment for acute ischemic stroke. Thereby, premorbid mRS was the most important clinical predictor for mRS-90, and the final infarction volume was the most important imaging predictor, while the extent of hemodynamic impairment on CT-perfusion before treatment had limited importance.
本研究旨在评估临床、多模态影像学和血管造影特征对急性缺血性卒中血管内治疗临床结局的预测性能和相对重要性。
回顾性分析了 2014 年 4 月至 2018 年 1 月期间接受血管内治疗的 246 例急性缺血性卒中和前循环大血管闭塞患者的连续系列。分析了治疗前的临床、常规影像学(电子 Alberta 卒中项目早期 CT 评分、急性缺血体积、血管闭塞部位和侧支循环评分)和高级影像学特征(CT 灌注并量化缺血半影和梗死核心体积),以及血管造影(股动脉穿刺-再通时间间隔、改良脑梗死溶栓评分)和介入后临床(24 小时后 NIHSS 评分)及影像学特征(电子 Alberta 卒中项目早期 CT 评分、18-36 小时后最终梗死体积)。90 天时的改良 Rankin 量表(mRS)评分用于测量患者预后(mRS-90≤2 为预后良好,mRS-90>2 为预后不良)。使用梯度提升分类器的机器学习方法来评估提取特征预测 mRS-90 的性能和相对重要性。
基线临床和常规影像学特征对 mRS-90 的预测 AUC 为 0.740(95%CI,0.733-0.747),准确率为 0.711(95%CI,0.705-0.717)。CT 灌注的高级影像学特征并未提高预测性能(AUC,0.747[95%CI,0.740-0.755];准确率,0.720[95%CI,0.714-0.727];=0.150)。进一步纳入血管造影和介入后特征显著提高了预测性能(AUC,0.856[95%CI,0.850-0.861];准确率,0.804[95%CI,0.799-0.810];<0.001)。预测 mRS 90 的最重要参数是 24 小时后 NIHSS 评分(重要性=100%)、发病前 mRS 评分(重要性=44%)和 18-36 小时后介入后 CT 上的最终梗死体积(重要性=32%)。
通过机器学习整合评估临床、多模态影像学和血管造影特征,能够准确预测急性缺血性卒中血管内治疗后的临床结局。其中,发病前 mRS 是预测 mRS-90 的最重要的临床预测因素,最终梗死体积是最重要的影像学预测因素,而治疗前 CT 灌注上的血流动力学损伤程度的重要性有限。