MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, United Kingdom.
Novo Nordisk Research Centre, Headington, Oxford, United Kingdom.
PLoS Biol. 2022 Feb 25;20(2):e3001547. doi: 10.1371/journal.pbio.3001547. eCollection 2022 Feb.
Large-scale molecular profiling and genotyping provide a unique opportunity to systematically compare the genetically predicted effects of therapeutic targets on the human metabolome. We firstly constructed genetic risk scores for 8 drug targets on the basis that they primarily modify low-density lipoprotein (LDL) cholesterol (HMGCR, PCKS9, and NPC1L1), high-density lipoprotein (HDL) cholesterol (CETP), or triglycerides (APOC3, ANGPTL3, ANGPTL4, and LPL). Conducting mendelian randomisation (MR) provided strong evidence of an effect of drug-based genetic scores on coronary artery disease (CAD) risk with the exception of ANGPTL3. We then systematically estimated the effects of each score on 249 metabolic traits derived using blood samples from an unprecedented sample size of up to 115,082 UK Biobank participants. Genetically predicted effects were generally consistent among drug targets, which were intended to modify the same lipoprotein lipid trait. For example, the linear fit for the MR estimates on all 249 metabolic traits for genetically predicted inhibition of LDL cholesterol lowering targets HMGCR and PCSK9 was r2 = 0.91. In contrast, comparisons between drug classes that were designed to modify discrete lipoprotein traits typically had very different effects on metabolic signatures (for instance, HMGCR versus each of the 4 triglyceride targets all had r2 < 0.02). Furthermore, we highlight this discrepancy for specific metabolic traits, for example, finding that LDL cholesterol lowering therapies typically had a weak effect on glycoprotein acetyls, a marker of inflammation, whereas triglyceride modifying therapies assessed provided evidence of a strong effect on lowering levels of this inflammatory biomarker. Our findings indicate that genetically predicted perturbations of these drug targets on the blood metabolome can drastically differ, despite largely consistent effects on risk of CAD, with potential implications for biomarkers in clinical development and measuring treatment response.
大规模的分子谱分析和基因分型为系统比较治疗靶点对人体代谢组的遗传预测效应提供了独特的机会。我们首先构建了 8 个药物靶点的遗传风险评分,这些靶点主要通过改变低密度脂蛋白(LDL)胆固醇(HMGCR、PCKS9 和 NPC1L1)、高密度脂蛋白(HDL)胆固醇(CETP)或甘油三酯(APOC3、ANGPTL3、ANGPTL4 和 LPL)来发挥作用。进行孟德尔随机化(MR)提供了强有力的证据,证明基于药物的遗传评分对冠心病(CAD)风险有影响,除了 ANGPTL3 以外。然后,我们系统地估计了每个评分对 249 个代谢特征的影响,这些特征是使用来自多达 115082 名英国生物银行参与者的血液样本获得的。遗传预测的影响在药物靶点之间通常是一致的,这些靶点旨在修饰相同的脂蛋白脂质特征。例如,对于遗传预测抑制 LDL 胆固醇降低靶点 HMGCR 和 PCSK9 的所有 249 个代谢特征的 MR 估计的线性拟合 r2=0.91。相比之下,旨在修饰离散脂蛋白特征的药物类别之间的比较通常对代谢特征有非常不同的影响(例如,HMGCR 与所有 4 个甘油三酯靶点的 r2<0.02)。此外,我们突出了这种差异对于特定的代谢特征,例如,发现 LDL 胆固醇降低疗法通常对糖蛋白乙酰基(炎症标志物)的影响较弱,而甘油三酯修饰疗法的评估则提供了对降低这种炎症生物标志物水平的强有力影响的证据。我们的研究结果表明,尽管这些药物靶点对 CAD 风险的影响大致一致,但它们对血液代谢组的遗传预测干扰可能会有很大的差异,这可能对临床开发和衡量治疗反应中的生物标志物产生影响。