Suppr超能文献

一种具有基因注意力机制的集成深度学习模型用于评估低级别胶质瘤的预后

An Ensemble Deep Learning Model with a Gene Attention Mechanism for Estimating the Prognosis of Low-Grade Glioma.

作者信息

Lee Minhyeok

机构信息

School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea.

出版信息

Biology (Basel). 2022 Apr 12;11(4):586. doi: 10.3390/biology11040586.

Abstract

While estimating the prognosis of low-grade glioma (LGG) is a crucial problem, it has not been extensively studied to introduce recent improvements in deep learning to address the problem. The attention mechanism is one of the significant advances; however, it is still unclear how attention mechanisms are used in gene expression data to estimate prognosis because they were designed for convolutional layers and word embeddings. This paper proposes an attention mechanism called gene attention for gene expression data. Additionally, a deep learning model for prognosis estimation of LGG is proposed using gene attention. The proposed Gene Attention Ensemble NETwork (GAENET) outperformed other conventional methods, including survival support vector machine and random survival forest. When evaluated by C-Index, the GAENET exhibited an improvement of 7.2% compared to the second-best model. In addition, taking advantage of the gene attention mechanism, was discovered as the most significant prognostic gene in terms of deep learning training. While is known as a pseudogene, is a biomarker estimating the prognosis of LGG and has demonstrated a possibility of regulating the expression of other prognostic genes.

摘要

虽然估计低级别胶质瘤(LGG)的预后是一个关键问题,但尚未广泛研究引入深度学习的最新进展来解决该问题。注意力机制是一项重大进展;然而,由于它们是为卷积层和词嵌入设计的,目前仍不清楚注意力机制如何用于基因表达数据以估计预后。本文针对基因表达数据提出了一种名为基因注意力的注意力机制。此外,还提出了一种使用基因注意力进行LGG预后估计的深度学习模型。所提出的基因注意力集成网络(GAENET)优于其他传统方法,包括生存支持向量机和随机生存森林。通过C指数评估时,GAENET与次优模型相比提高了7.2%。此外,利用基因注意力机制,在深度学习训练方面发现 是最显著的预后基因。虽然 被认为是一个假基因,但 是估计LGG预后的生物标志物,并已证明有可能调节其他预后基因的表达。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a309/9027395/84e7f2480be4/biology-11-00586-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验